MULTIPLE GENETIC PATHWAYS TO SIMILAR FITNESS LIMITS DURING VIRAL ADAPTATION TO A NEW HOST

The gain in fitness during adaptation depends on the supply of beneficial mutations. Despite a good theoretical understanding of how evolution proceeds for a defined set of mutations, there is little understanding of constraints on net fitness—whether fitness will reach a limit despite ongoing selec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolution 2012-02, Vol.66 (2), p.363-374
Hauptverfasser: Nguyen, Andre H., Molineux, Ian J., Springman, Rachael, Bull, James J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 374
container_issue 2
container_start_page 363
container_title Evolution
container_volume 66
creator Nguyen, Andre H.
Molineux, Ian J.
Springman, Rachael
Bull, James J.
description The gain in fitness during adaptation depends on the supply of beneficial mutations. Despite a good theoretical understanding of how evolution proceeds for a defined set of mutations, there is little understanding of constraints on net fitness—whether fitness will reach a limit despite ongoing selection and mutation, and if there is a limit, what determines it. Here, the dsDNA bacteriophage SP6, a virus of Salmonella, was adapted to Escherichia coli K-12. From an isolate capable of modest growth on E. coli, four lines were adapted for rapid growth by protocols differing in use of mutagen, propagation method, and duration, but using the same media, temperature, and a continual excess of the novel host. Nucleotide changes underlying those adaptations differed greatly in number and identity, but the four lines achieved similar absolute fitness at the end, an increase of more than 4000-fold phage descendants per hour. Thus, the fitness landscape allows multiple genetic paths to the same approximate fitness limit. The existence and causes of fitness limits have ramifications to genome engineering, vaccine design, and "lethal mutagenesis" treatments to cure viral infections.
doi_str_mv 10.1111/j.1558-5646.2011.01433.x
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3377685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41460072</jstor_id><sourcerecordid>41460072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5773-d9e80d452167f319e27ec2439676ae0a9bb38b55e204ec79d21d3cf7bb661fc3</originalsourceid><addsrcrecordid>eNpVkVtv0zAAhS0EYmXwE0AW7wm-O3kAKWrTNihLSuO12pOViwsJXTOSFrp_j0NHBH7x5Tvn2PIBAGLkYjs-NC7m3HO4YMIlCGMXYUape34GJiN4DibIHjvUI-gKvOr7BiHkc-y_BFeEECk4ZRNwd3Mbq2gVh3ARJqGKpnAVqOU2uMugSmEW3URxsIbzSCVhlsHY7lUGZ7frKFnATbQOYhjMgpUKVJQmgyOASbiFyzRTr8GLXb7vzZun-RqoeaimSydOF9E0iJ2SS0mdyjceqhgnWMgdxb4h0pSEUV9IkRuU-0VBvYJzQxAzpfQrgita7mRRCIF3Jb0Gny6xD6fi3lSlORy7fK8fuvo-7x51m9f6f3Kov-mv7U9NqZTC4zbg_VNA1_44mf6om_bUHeyTtU8wlphwZEXv_r1ljP_7kVbw8SL4Ve_N48gx0kNhutFDL3roRQ-F6T-F6bMON-mwsv63F3_TH9tu9DPMBEKSWO5ceN0fzXnkefddC0kl19tkoT9v2JzN5l-0pL8B76qaLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921171250</pqid></control><display><type>article</type><title>MULTIPLE GENETIC PATHWAYS TO SIMILAR FITNESS LIMITS DURING VIRAL ADAPTATION TO A NEW HOST</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Nguyen, Andre H. ; Molineux, Ian J. ; Springman, Rachael ; Bull, James J.</creator><creatorcontrib>Nguyen, Andre H. ; Molineux, Ian J. ; Springman, Rachael ; Bull, James J.</creatorcontrib><description>The gain in fitness during adaptation depends on the supply of beneficial mutations. Despite a good theoretical understanding of how evolution proceeds for a defined set of mutations, there is little understanding of constraints on net fitness—whether fitness will reach a limit despite ongoing selection and mutation, and if there is a limit, what determines it. Here, the dsDNA bacteriophage SP6, a virus of Salmonella, was adapted to Escherichia coli K-12. From an isolate capable of modest growth on E. coli, four lines were adapted for rapid growth by protocols differing in use of mutagen, propagation method, and duration, but using the same media, temperature, and a continual excess of the novel host. Nucleotide changes underlying those adaptations differed greatly in number and identity, but the four lines achieved similar absolute fitness at the end, an increase of more than 4000-fold phage descendants per hour. Thus, the fitness landscape allows multiple genetic paths to the same approximate fitness limit. The existence and causes of fitness limits have ramifications to genome engineering, vaccine design, and "lethal mutagenesis" treatments to cure viral infections.</description><identifier>ISSN: 0014-3820</identifier><identifier>EISSN: 1558-5646</identifier><identifier>DOI: 10.1111/j.1558-5646.2011.01433.x</identifier><identifier>PMID: 22276534</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Bacteriophage ; Bacteriophages ; Biological adaptation ; Biological Evolution ; Deoxyribonucleic acid ; DNA ; DNA sequence ; E coli ; Ecological competition ; Escherichia coli K12 - virology ; Evolution ; Evolutionary genetics ; experimental evolution ; Genetic mutation ; genome ; Genomes ; Host Specificity ; Models, Genetic ; Mutagenesis ; Mutation ; nucleotide ; Parallel evolution ; Parallel lines ; Podoviridae - genetics ; Podoviridae - physiology ; Salmonella ; Salmonella - virology ; Viruses</subject><ispartof>Evolution, 2012-02, Vol.66 (2), p.363-374</ispartof><rights>Copyright © 2012, Society for the Study of Evolution</rights><rights>2011 The Author(s). © 2011 The Society for the Study of Evolution.</rights><rights>2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.</rights><rights>Copyright Society for the Study of Evolution Feb 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5773-d9e80d452167f319e27ec2439676ae0a9bb38b55e204ec79d21d3cf7bb661fc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41460072$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41460072$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,777,781,800,882,1412,27905,27906,45555,45556,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22276534$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Andre H.</creatorcontrib><creatorcontrib>Molineux, Ian J.</creatorcontrib><creatorcontrib>Springman, Rachael</creatorcontrib><creatorcontrib>Bull, James J.</creatorcontrib><title>MULTIPLE GENETIC PATHWAYS TO SIMILAR FITNESS LIMITS DURING VIRAL ADAPTATION TO A NEW HOST</title><title>Evolution</title><addtitle>Evolution</addtitle><description>The gain in fitness during adaptation depends on the supply of beneficial mutations. Despite a good theoretical understanding of how evolution proceeds for a defined set of mutations, there is little understanding of constraints on net fitness—whether fitness will reach a limit despite ongoing selection and mutation, and if there is a limit, what determines it. Here, the dsDNA bacteriophage SP6, a virus of Salmonella, was adapted to Escherichia coli K-12. From an isolate capable of modest growth on E. coli, four lines were adapted for rapid growth by protocols differing in use of mutagen, propagation method, and duration, but using the same media, temperature, and a continual excess of the novel host. Nucleotide changes underlying those adaptations differed greatly in number and identity, but the four lines achieved similar absolute fitness at the end, an increase of more than 4000-fold phage descendants per hour. Thus, the fitness landscape allows multiple genetic paths to the same approximate fitness limit. The existence and causes of fitness limits have ramifications to genome engineering, vaccine design, and "lethal mutagenesis" treatments to cure viral infections.</description><subject>Bacteriophage</subject><subject>Bacteriophages</subject><subject>Biological adaptation</subject><subject>Biological Evolution</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA sequence</subject><subject>E coli</subject><subject>Ecological competition</subject><subject>Escherichia coli K12 - virology</subject><subject>Evolution</subject><subject>Evolutionary genetics</subject><subject>experimental evolution</subject><subject>Genetic mutation</subject><subject>genome</subject><subject>Genomes</subject><subject>Host Specificity</subject><subject>Models, Genetic</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>nucleotide</subject><subject>Parallel evolution</subject><subject>Parallel lines</subject><subject>Podoviridae - genetics</subject><subject>Podoviridae - physiology</subject><subject>Salmonella</subject><subject>Salmonella - virology</subject><subject>Viruses</subject><issn>0014-3820</issn><issn>1558-5646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkVtv0zAAhS0EYmXwE0AW7wm-O3kAKWrTNihLSuO12pOViwsJXTOSFrp_j0NHBH7x5Tvn2PIBAGLkYjs-NC7m3HO4YMIlCGMXYUape34GJiN4DibIHjvUI-gKvOr7BiHkc-y_BFeEECk4ZRNwd3Mbq2gVh3ARJqGKpnAVqOU2uMugSmEW3URxsIbzSCVhlsHY7lUGZ7frKFnATbQOYhjMgpUKVJQmgyOASbiFyzRTr8GLXb7vzZun-RqoeaimSydOF9E0iJ2SS0mdyjceqhgnWMgdxb4h0pSEUV9IkRuU-0VBvYJzQxAzpfQrgita7mRRCIF3Jb0Gny6xD6fi3lSlORy7fK8fuvo-7x51m9f6f3Kov-mv7U9NqZTC4zbg_VNA1_44mf6om_bUHeyTtU8wlphwZEXv_r1ljP_7kVbw8SL4Ve_N48gx0kNhutFDL3roRQ-F6T-F6bMON-mwsv63F3_TH9tu9DPMBEKSWO5ceN0fzXnkefddC0kl19tkoT9v2JzN5l-0pL8B76qaLQ</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>Nguyen, Andre H.</creator><creator>Molineux, Ian J.</creator><creator>Springman, Rachael</creator><creator>Bull, James J.</creator><general>Blackwell Publishing Inc</general><general>Wiley Subscription Services, Inc</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>201202</creationdate><title>MULTIPLE GENETIC PATHWAYS TO SIMILAR FITNESS LIMITS DURING VIRAL ADAPTATION TO A NEW HOST</title><author>Nguyen, Andre H. ; Molineux, Ian J. ; Springman, Rachael ; Bull, James J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5773-d9e80d452167f319e27ec2439676ae0a9bb38b55e204ec79d21d3cf7bb661fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bacteriophage</topic><topic>Bacteriophages</topic><topic>Biological adaptation</topic><topic>Biological Evolution</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA sequence</topic><topic>E coli</topic><topic>Ecological competition</topic><topic>Escherichia coli K12 - virology</topic><topic>Evolution</topic><topic>Evolutionary genetics</topic><topic>experimental evolution</topic><topic>Genetic mutation</topic><topic>genome</topic><topic>Genomes</topic><topic>Host Specificity</topic><topic>Models, Genetic</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>nucleotide</topic><topic>Parallel evolution</topic><topic>Parallel lines</topic><topic>Podoviridae - genetics</topic><topic>Podoviridae - physiology</topic><topic>Salmonella</topic><topic>Salmonella - virology</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Andre H.</creatorcontrib><creatorcontrib>Molineux, Ian J.</creatorcontrib><creatorcontrib>Springman, Rachael</creatorcontrib><creatorcontrib>Bull, James J.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Andre H.</au><au>Molineux, Ian J.</au><au>Springman, Rachael</au><au>Bull, James J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MULTIPLE GENETIC PATHWAYS TO SIMILAR FITNESS LIMITS DURING VIRAL ADAPTATION TO A NEW HOST</atitle><jtitle>Evolution</jtitle><addtitle>Evolution</addtitle><date>2012-02</date><risdate>2012</risdate><volume>66</volume><issue>2</issue><spage>363</spage><epage>374</epage><pages>363-374</pages><issn>0014-3820</issn><eissn>1558-5646</eissn><abstract>The gain in fitness during adaptation depends on the supply of beneficial mutations. Despite a good theoretical understanding of how evolution proceeds for a defined set of mutations, there is little understanding of constraints on net fitness—whether fitness will reach a limit despite ongoing selection and mutation, and if there is a limit, what determines it. Here, the dsDNA bacteriophage SP6, a virus of Salmonella, was adapted to Escherichia coli K-12. From an isolate capable of modest growth on E. coli, four lines were adapted for rapid growth by protocols differing in use of mutagen, propagation method, and duration, but using the same media, temperature, and a continual excess of the novel host. Nucleotide changes underlying those adaptations differed greatly in number and identity, but the four lines achieved similar absolute fitness at the end, an increase of more than 4000-fold phage descendants per hour. Thus, the fitness landscape allows multiple genetic paths to the same approximate fitness limit. The existence and causes of fitness limits have ramifications to genome engineering, vaccine design, and "lethal mutagenesis" treatments to cure viral infections.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>22276534</pmid><doi>10.1111/j.1558-5646.2011.01433.x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-3820
ispartof Evolution, 2012-02, Vol.66 (2), p.363-374
issn 0014-3820
1558-5646
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3377685
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current)
subjects Bacteriophage
Bacteriophages
Biological adaptation
Biological Evolution
Deoxyribonucleic acid
DNA
DNA sequence
E coli
Ecological competition
Escherichia coli K12 - virology
Evolution
Evolutionary genetics
experimental evolution
Genetic mutation
genome
Genomes
Host Specificity
Models, Genetic
Mutagenesis
Mutation
nucleotide
Parallel evolution
Parallel lines
Podoviridae - genetics
Podoviridae - physiology
Salmonella
Salmonella - virology
Viruses
title MULTIPLE GENETIC PATHWAYS TO SIMILAR FITNESS LIMITS DURING VIRAL ADAPTATION TO A NEW HOST
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A46%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MULTIPLE%20GENETIC%20PATHWAYS%20TO%20SIMILAR%20FITNESS%20LIMITS%20DURING%20VIRAL%20ADAPTATION%20TO%20A%20NEW%20HOST&rft.jtitle=Evolution&rft.au=Nguyen,%20Andre%20H.&rft.date=2012-02&rft.volume=66&rft.issue=2&rft.spage=363&rft.epage=374&rft.pages=363-374&rft.issn=0014-3820&rft.eissn=1558-5646&rft_id=info:doi/10.1111/j.1558-5646.2011.01433.x&rft_dat=%3Cjstor_pubme%3E41460072%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921171250&rft_id=info:pmid/22276534&rft_jstor_id=41460072&rfr_iscdi=true