Staphylococcus aureus FabI: Inhibition, Substrate Recognition, and Potential Implications for In Vivo Essentiality
Methicillin-resistant Staphylococcus aureus (MRSA) infections constitute a serious health threat worldwide, and novel antibiotics are therefore urgently needed. The enoyl-ACP reductase (saFabI) is essential for the S. aureus fatty acid biosynthesis and, hence, serves as an attractive drug target. We...
Gespeichert in:
Veröffentlicht in: | Structure (London) 2012-05, Vol.20 (5), p.802-813 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 813 |
---|---|
container_issue | 5 |
container_start_page | 802 |
container_title | Structure (London) |
container_volume | 20 |
creator | Schiebel, Johannes Chang, Andrew Lu, Hao Baxter, Michael V. Tonge, Peter J. Kisker, Caroline |
description | Methicillin-resistant Staphylococcus aureus (MRSA) infections constitute a serious health threat worldwide, and novel antibiotics are therefore urgently needed. The enoyl-ACP reductase (saFabI) is essential for the S. aureus fatty acid biosynthesis and, hence, serves as an attractive drug target. We have obtained a series of snapshots of this enzyme that provide a mechanistic picture of ligand and inhibitor binding, including a dimer-tetramer transition combined with extensive conformational changes. Significantly, our results reveal key differences in ligand binding and recognition compared to orthologous proteins. The remarkable observed protein flexibility rationalizes our finding that saFabI is capable of efficiently reducing branched-chain fatty acid precursors. Importantly, branched-chain fatty acids represent a major fraction of the S. aureus cell membrane and are crucial for its in vivo fitness. Our discovery thus addresses a long-standing controversy regarding the essentiality of the fatty acid biosynthesis pathway in S. aureus rationalizing saFabI as a drug target.
[Display omitted]
► Insights into saFabI ligand binding including a dimer-tetramer transition ► Identification of a loop motif that determines altered cofactor specificity ► Increased flexibility modulates substrate and inhibitor recognition ► Ability of saFabI to reduce branched-chain fatty acid precursor molecules |
doi_str_mv | 10.1016/j.str.2012.03.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3376755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S096921261200130X</els_id><sourcerecordid>1038246136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4653-6775517f13eb68736f69a6f7c0f24d3720dd2ccb1add689fe715ac41758a00ea3</originalsourceid><addsrcrecordid>eNqNkc-KFDEQxoMo7rj6AF6kjx7sNpV0J90Kgiy7OrCguOo1pJPqnQw9ndkkPTBv47P4ZGaYcdGLeCqo-n1f_SPkOdAKKIjX6yqmUDEKrKK8osAfkAW0si1raMVDsqCd6EoGTJyRJzGuKaWsofQxOWOskR2ruwWJN0lvV_vRG2_MHAs9B8zhSvfLN8VyWrneJeenV8XN3OdmOmHxBY2_nU5pPdnis084JafHYrnZjs7oQykWgw_Z4eeP727ni8sYj4xL-6fk0aDHiM9O8Zx8u7r8evGxvP70YXnx_ro0tWh4KaRsGpADcOxFK7kYRKfFIA0dWG25ZNRaZkwP2lrRdgNKaLSpQTatphQ1Pyfvjr7bud-gNXmAoEe1DW6jw1557dTflcmt1K3fKc6lyL2zwcuTQfB3M8akNi4aHEc9oZ-jAspbVgvg4j9Q4LIRXd1mFI6oCT7GgMP9REAPnFBrlU-tDn9VlKuszJoXf65yr_j9yAy8PQKYD7pzGFQ0DieD1gU0SVnv_mH_C4XZtnY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1013756948</pqid></control><display><type>article</type><title>Staphylococcus aureus FabI: Inhibition, Substrate Recognition, and Potential Implications for In Vivo Essentiality</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Schiebel, Johannes ; Chang, Andrew ; Lu, Hao ; Baxter, Michael V. ; Tonge, Peter J. ; Kisker, Caroline</creator><creatorcontrib>Schiebel, Johannes ; Chang, Andrew ; Lu, Hao ; Baxter, Michael V. ; Tonge, Peter J. ; Kisker, Caroline</creatorcontrib><description>Methicillin-resistant Staphylococcus aureus (MRSA) infections constitute a serious health threat worldwide, and novel antibiotics are therefore urgently needed. The enoyl-ACP reductase (saFabI) is essential for the S. aureus fatty acid biosynthesis and, hence, serves as an attractive drug target. We have obtained a series of snapshots of this enzyme that provide a mechanistic picture of ligand and inhibitor binding, including a dimer-tetramer transition combined with extensive conformational changes. Significantly, our results reveal key differences in ligand binding and recognition compared to orthologous proteins. The remarkable observed protein flexibility rationalizes our finding that saFabI is capable of efficiently reducing branched-chain fatty acid precursors. Importantly, branched-chain fatty acids represent a major fraction of the S. aureus cell membrane and are crucial for its in vivo fitness. Our discovery thus addresses a long-standing controversy regarding the essentiality of the fatty acid biosynthesis pathway in S. aureus rationalizing saFabI as a drug target.
[Display omitted]
► Insights into saFabI ligand binding including a dimer-tetramer transition ► Identification of a loop motif that determines altered cofactor specificity ► Increased flexibility modulates substrate and inhibitor recognition ► Ability of saFabI to reduce branched-chain fatty acid precursor molecules</description><identifier>ISSN: 0969-2126</identifier><identifier>EISSN: 1878-4186</identifier><identifier>DOI: 10.1016/j.str.2012.03.013</identifier><identifier>PMID: 22579249</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Bacterial Proteins - antagonists & inhibitors ; Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - antagonists & inhibitors ; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - chemistry ; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - metabolism ; Fatty Acids - metabolism ; Kinetics ; Ligands ; Molecular Sequence Data ; Protein Conformation ; Staphylococcus aureus ; Staphylococcus aureus - enzymology ; Staphylococcus aureus - metabolism ; Structure-Activity Relationship ; Substrate Specificity</subject><ispartof>Structure (London), 2012-05, Vol.20 (5), p.802-813</ispartof><rights>2012 Elsevier Ltd</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><rights>2012 Elsevier Inc. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4653-6775517f13eb68736f69a6f7c0f24d3720dd2ccb1add689fe715ac41758a00ea3</citedby><cites>FETCH-LOGICAL-c4653-6775517f13eb68736f69a6f7c0f24d3720dd2ccb1add689fe715ac41758a00ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S096921261200130X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22579249$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schiebel, Johannes</creatorcontrib><creatorcontrib>Chang, Andrew</creatorcontrib><creatorcontrib>Lu, Hao</creatorcontrib><creatorcontrib>Baxter, Michael V.</creatorcontrib><creatorcontrib>Tonge, Peter J.</creatorcontrib><creatorcontrib>Kisker, Caroline</creatorcontrib><title>Staphylococcus aureus FabI: Inhibition, Substrate Recognition, and Potential Implications for In Vivo Essentiality</title><title>Structure (London)</title><addtitle>Structure</addtitle><description>Methicillin-resistant Staphylococcus aureus (MRSA) infections constitute a serious health threat worldwide, and novel antibiotics are therefore urgently needed. The enoyl-ACP reductase (saFabI) is essential for the S. aureus fatty acid biosynthesis and, hence, serves as an attractive drug target. We have obtained a series of snapshots of this enzyme that provide a mechanistic picture of ligand and inhibitor binding, including a dimer-tetramer transition combined with extensive conformational changes. Significantly, our results reveal key differences in ligand binding and recognition compared to orthologous proteins. The remarkable observed protein flexibility rationalizes our finding that saFabI is capable of efficiently reducing branched-chain fatty acid precursors. Importantly, branched-chain fatty acids represent a major fraction of the S. aureus cell membrane and are crucial for its in vivo fitness. Our discovery thus addresses a long-standing controversy regarding the essentiality of the fatty acid biosynthesis pathway in S. aureus rationalizing saFabI as a drug target.
[Display omitted]
► Insights into saFabI ligand binding including a dimer-tetramer transition ► Identification of a loop motif that determines altered cofactor specificity ► Increased flexibility modulates substrate and inhibitor recognition ► Ability of saFabI to reduce branched-chain fatty acid precursor molecules</description><subject>Amino Acid Sequence</subject><subject>Bacterial Proteins - antagonists & inhibitors</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - antagonists & inhibitors</subject><subject>Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - chemistry</subject><subject>Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - metabolism</subject><subject>Fatty Acids - metabolism</subject><subject>Kinetics</subject><subject>Ligands</subject><subject>Molecular Sequence Data</subject><subject>Protein Conformation</subject><subject>Staphylococcus aureus</subject><subject>Staphylococcus aureus - enzymology</subject><subject>Staphylococcus aureus - metabolism</subject><subject>Structure-Activity Relationship</subject><subject>Substrate Specificity</subject><issn>0969-2126</issn><issn>1878-4186</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc-KFDEQxoMo7rj6AF6kjx7sNpV0J90Kgiy7OrCguOo1pJPqnQw9ndkkPTBv47P4ZGaYcdGLeCqo-n1f_SPkOdAKKIjX6yqmUDEKrKK8osAfkAW0si1raMVDsqCd6EoGTJyRJzGuKaWsofQxOWOskR2ruwWJN0lvV_vRG2_MHAs9B8zhSvfLN8VyWrneJeenV8XN3OdmOmHxBY2_nU5pPdnis084JafHYrnZjs7oQykWgw_Z4eeP727ni8sYj4xL-6fk0aDHiM9O8Zx8u7r8evGxvP70YXnx_ro0tWh4KaRsGpADcOxFK7kYRKfFIA0dWG25ZNRaZkwP2lrRdgNKaLSpQTatphQ1Pyfvjr7bud-gNXmAoEe1DW6jw1557dTflcmt1K3fKc6lyL2zwcuTQfB3M8akNi4aHEc9oZ-jAspbVgvg4j9Q4LIRXd1mFI6oCT7GgMP9REAPnFBrlU-tDn9VlKuszJoXf65yr_j9yAy8PQKYD7pzGFQ0DieD1gU0SVnv_mH_C4XZtnY</recordid><startdate>20120509</startdate><enddate>20120509</enddate><creator>Schiebel, Johannes</creator><creator>Chang, Andrew</creator><creator>Lu, Hao</creator><creator>Baxter, Michael V.</creator><creator>Tonge, Peter J.</creator><creator>Kisker, Caroline</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>C1K</scope><scope>5PM</scope></search><sort><creationdate>20120509</creationdate><title>Staphylococcus aureus FabI: Inhibition, Substrate Recognition, and Potential Implications for In Vivo Essentiality</title><author>Schiebel, Johannes ; Chang, Andrew ; Lu, Hao ; Baxter, Michael V. ; Tonge, Peter J. ; Kisker, Caroline</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4653-6775517f13eb68736f69a6f7c0f24d3720dd2ccb1add689fe715ac41758a00ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amino Acid Sequence</topic><topic>Bacterial Proteins - antagonists & inhibitors</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - antagonists & inhibitors</topic><topic>Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - chemistry</topic><topic>Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - metabolism</topic><topic>Fatty Acids - metabolism</topic><topic>Kinetics</topic><topic>Ligands</topic><topic>Molecular Sequence Data</topic><topic>Protein Conformation</topic><topic>Staphylococcus aureus</topic><topic>Staphylococcus aureus - enzymology</topic><topic>Staphylococcus aureus - metabolism</topic><topic>Structure-Activity Relationship</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schiebel, Johannes</creatorcontrib><creatorcontrib>Chang, Andrew</creatorcontrib><creatorcontrib>Lu, Hao</creatorcontrib><creatorcontrib>Baxter, Michael V.</creatorcontrib><creatorcontrib>Tonge, Peter J.</creatorcontrib><creatorcontrib>Kisker, Caroline</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Structure (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schiebel, Johannes</au><au>Chang, Andrew</au><au>Lu, Hao</au><au>Baxter, Michael V.</au><au>Tonge, Peter J.</au><au>Kisker, Caroline</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Staphylococcus aureus FabI: Inhibition, Substrate Recognition, and Potential Implications for In Vivo Essentiality</atitle><jtitle>Structure (London)</jtitle><addtitle>Structure</addtitle><date>2012-05-09</date><risdate>2012</risdate><volume>20</volume><issue>5</issue><spage>802</spage><epage>813</epage><pages>802-813</pages><issn>0969-2126</issn><eissn>1878-4186</eissn><abstract>Methicillin-resistant Staphylococcus aureus (MRSA) infections constitute a serious health threat worldwide, and novel antibiotics are therefore urgently needed. The enoyl-ACP reductase (saFabI) is essential for the S. aureus fatty acid biosynthesis and, hence, serves as an attractive drug target. We have obtained a series of snapshots of this enzyme that provide a mechanistic picture of ligand and inhibitor binding, including a dimer-tetramer transition combined with extensive conformational changes. Significantly, our results reveal key differences in ligand binding and recognition compared to orthologous proteins. The remarkable observed protein flexibility rationalizes our finding that saFabI is capable of efficiently reducing branched-chain fatty acid precursors. Importantly, branched-chain fatty acids represent a major fraction of the S. aureus cell membrane and are crucial for its in vivo fitness. Our discovery thus addresses a long-standing controversy regarding the essentiality of the fatty acid biosynthesis pathway in S. aureus rationalizing saFabI as a drug target.
[Display omitted]
► Insights into saFabI ligand binding including a dimer-tetramer transition ► Identification of a loop motif that determines altered cofactor specificity ► Increased flexibility modulates substrate and inhibitor recognition ► Ability of saFabI to reduce branched-chain fatty acid precursor molecules</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22579249</pmid><doi>10.1016/j.str.2012.03.013</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-2126 |
ispartof | Structure (London), 2012-05, Vol.20 (5), p.802-813 |
issn | 0969-2126 1878-4186 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3376755 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Bacterial Proteins - antagonists & inhibitors Bacterial Proteins - chemistry Bacterial Proteins - metabolism Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - antagonists & inhibitors Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - chemistry Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - metabolism Fatty Acids - metabolism Kinetics Ligands Molecular Sequence Data Protein Conformation Staphylococcus aureus Staphylococcus aureus - enzymology Staphylococcus aureus - metabolism Structure-Activity Relationship Substrate Specificity |
title | Staphylococcus aureus FabI: Inhibition, Substrate Recognition, and Potential Implications for In Vivo Essentiality |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A20%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Staphylococcus%20aureus%20FabI:%20Inhibition,%20Substrate%20Recognition,%20and%20Potential%20Implications%20for%20In%C2%A0Vivo%20Essentiality&rft.jtitle=Structure%20(London)&rft.au=Schiebel,%20Johannes&rft.date=2012-05-09&rft.volume=20&rft.issue=5&rft.spage=802&rft.epage=813&rft.pages=802-813&rft.issn=0969-2126&rft.eissn=1878-4186&rft_id=info:doi/10.1016/j.str.2012.03.013&rft_dat=%3Cproquest_pubme%3E1038246136%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1013756948&rft_id=info:pmid/22579249&rft_els_id=S096921261200130X&rfr_iscdi=true |