Staphylococcus aureus FabI: Inhibition, Substrate Recognition, and Potential Implications for In Vivo Essentiality

Methicillin-resistant Staphylococcus aureus (MRSA) infections constitute a serious health threat worldwide, and novel antibiotics are therefore urgently needed. The enoyl-ACP reductase (saFabI) is essential for the S. aureus fatty acid biosynthesis and, hence, serves as an attractive drug target. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structure (London) 2012-05, Vol.20 (5), p.802-813
Hauptverfasser: Schiebel, Johannes, Chang, Andrew, Lu, Hao, Baxter, Michael V., Tonge, Peter J., Kisker, Caroline
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 813
container_issue 5
container_start_page 802
container_title Structure (London)
container_volume 20
creator Schiebel, Johannes
Chang, Andrew
Lu, Hao
Baxter, Michael V.
Tonge, Peter J.
Kisker, Caroline
description Methicillin-resistant Staphylococcus aureus (MRSA) infections constitute a serious health threat worldwide, and novel antibiotics are therefore urgently needed. The enoyl-ACP reductase (saFabI) is essential for the S. aureus fatty acid biosynthesis and, hence, serves as an attractive drug target. We have obtained a series of snapshots of this enzyme that provide a mechanistic picture of ligand and inhibitor binding, including a dimer-tetramer transition combined with extensive conformational changes. Significantly, our results reveal key differences in ligand binding and recognition compared to orthologous proteins. The remarkable observed protein flexibility rationalizes our finding that saFabI is capable of efficiently reducing branched-chain fatty acid precursors. Importantly, branched-chain fatty acids represent a major fraction of the S. aureus cell membrane and are crucial for its in vivo fitness. Our discovery thus addresses a long-standing controversy regarding the essentiality of the fatty acid biosynthesis pathway in S. aureus rationalizing saFabI as a drug target. [Display omitted] ► Insights into saFabI ligand binding including a dimer-tetramer transition ► Identification of a loop motif that determines altered cofactor specificity ► Increased flexibility modulates substrate and inhibitor recognition ► Ability of saFabI to reduce branched-chain fatty acid precursor molecules
doi_str_mv 10.1016/j.str.2012.03.013
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3376755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S096921261200130X</els_id><sourcerecordid>1038246136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4653-6775517f13eb68736f69a6f7c0f24d3720dd2ccb1add689fe715ac41758a00ea3</originalsourceid><addsrcrecordid>eNqNkc-KFDEQxoMo7rj6AF6kjx7sNpV0J90Kgiy7OrCguOo1pJPqnQw9ndkkPTBv47P4ZGaYcdGLeCqo-n1f_SPkOdAKKIjX6yqmUDEKrKK8osAfkAW0si1raMVDsqCd6EoGTJyRJzGuKaWsofQxOWOskR2ruwWJN0lvV_vRG2_MHAs9B8zhSvfLN8VyWrneJeenV8XN3OdmOmHxBY2_nU5pPdnis084JafHYrnZjs7oQykWgw_Z4eeP727ni8sYj4xL-6fk0aDHiM9O8Zx8u7r8evGxvP70YXnx_ro0tWh4KaRsGpADcOxFK7kYRKfFIA0dWG25ZNRaZkwP2lrRdgNKaLSpQTatphQ1Pyfvjr7bud-gNXmAoEe1DW6jw1557dTflcmt1K3fKc6lyL2zwcuTQfB3M8akNi4aHEc9oZ-jAspbVgvg4j9Q4LIRXd1mFI6oCT7GgMP9REAPnFBrlU-tDn9VlKuszJoXf65yr_j9yAy8PQKYD7pzGFQ0DieD1gU0SVnv_mH_C4XZtnY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1013756948</pqid></control><display><type>article</type><title>Staphylococcus aureus FabI: Inhibition, Substrate Recognition, and Potential Implications for In Vivo Essentiality</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Schiebel, Johannes ; Chang, Andrew ; Lu, Hao ; Baxter, Michael V. ; Tonge, Peter J. ; Kisker, Caroline</creator><creatorcontrib>Schiebel, Johannes ; Chang, Andrew ; Lu, Hao ; Baxter, Michael V. ; Tonge, Peter J. ; Kisker, Caroline</creatorcontrib><description>Methicillin-resistant Staphylococcus aureus (MRSA) infections constitute a serious health threat worldwide, and novel antibiotics are therefore urgently needed. The enoyl-ACP reductase (saFabI) is essential for the S. aureus fatty acid biosynthesis and, hence, serves as an attractive drug target. We have obtained a series of snapshots of this enzyme that provide a mechanistic picture of ligand and inhibitor binding, including a dimer-tetramer transition combined with extensive conformational changes. Significantly, our results reveal key differences in ligand binding and recognition compared to orthologous proteins. The remarkable observed protein flexibility rationalizes our finding that saFabI is capable of efficiently reducing branched-chain fatty acid precursors. Importantly, branched-chain fatty acids represent a major fraction of the S. aureus cell membrane and are crucial for its in vivo fitness. Our discovery thus addresses a long-standing controversy regarding the essentiality of the fatty acid biosynthesis pathway in S. aureus rationalizing saFabI as a drug target. [Display omitted] ► Insights into saFabI ligand binding including a dimer-tetramer transition ► Identification of a loop motif that determines altered cofactor specificity ► Increased flexibility modulates substrate and inhibitor recognition ► Ability of saFabI to reduce branched-chain fatty acid precursor molecules</description><identifier>ISSN: 0969-2126</identifier><identifier>EISSN: 1878-4186</identifier><identifier>DOI: 10.1016/j.str.2012.03.013</identifier><identifier>PMID: 22579249</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Bacterial Proteins - antagonists &amp; inhibitors ; Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - antagonists &amp; inhibitors ; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - chemistry ; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - metabolism ; Fatty Acids - metabolism ; Kinetics ; Ligands ; Molecular Sequence Data ; Protein Conformation ; Staphylococcus aureus ; Staphylococcus aureus - enzymology ; Staphylococcus aureus - metabolism ; Structure-Activity Relationship ; Substrate Specificity</subject><ispartof>Structure (London), 2012-05, Vol.20 (5), p.802-813</ispartof><rights>2012 Elsevier Ltd</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><rights>2012 Elsevier Inc. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4653-6775517f13eb68736f69a6f7c0f24d3720dd2ccb1add689fe715ac41758a00ea3</citedby><cites>FETCH-LOGICAL-c4653-6775517f13eb68736f69a6f7c0f24d3720dd2ccb1add689fe715ac41758a00ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S096921261200130X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22579249$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schiebel, Johannes</creatorcontrib><creatorcontrib>Chang, Andrew</creatorcontrib><creatorcontrib>Lu, Hao</creatorcontrib><creatorcontrib>Baxter, Michael V.</creatorcontrib><creatorcontrib>Tonge, Peter J.</creatorcontrib><creatorcontrib>Kisker, Caroline</creatorcontrib><title>Staphylococcus aureus FabI: Inhibition, Substrate Recognition, and Potential Implications for In Vivo Essentiality</title><title>Structure (London)</title><addtitle>Structure</addtitle><description>Methicillin-resistant Staphylococcus aureus (MRSA) infections constitute a serious health threat worldwide, and novel antibiotics are therefore urgently needed. The enoyl-ACP reductase (saFabI) is essential for the S. aureus fatty acid biosynthesis and, hence, serves as an attractive drug target. We have obtained a series of snapshots of this enzyme that provide a mechanistic picture of ligand and inhibitor binding, including a dimer-tetramer transition combined with extensive conformational changes. Significantly, our results reveal key differences in ligand binding and recognition compared to orthologous proteins. The remarkable observed protein flexibility rationalizes our finding that saFabI is capable of efficiently reducing branched-chain fatty acid precursors. Importantly, branched-chain fatty acids represent a major fraction of the S. aureus cell membrane and are crucial for its in vivo fitness. Our discovery thus addresses a long-standing controversy regarding the essentiality of the fatty acid biosynthesis pathway in S. aureus rationalizing saFabI as a drug target. [Display omitted] ► Insights into saFabI ligand binding including a dimer-tetramer transition ► Identification of a loop motif that determines altered cofactor specificity ► Increased flexibility modulates substrate and inhibitor recognition ► Ability of saFabI to reduce branched-chain fatty acid precursor molecules</description><subject>Amino Acid Sequence</subject><subject>Bacterial Proteins - antagonists &amp; inhibitors</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - antagonists &amp; inhibitors</subject><subject>Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - chemistry</subject><subject>Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - metabolism</subject><subject>Fatty Acids - metabolism</subject><subject>Kinetics</subject><subject>Ligands</subject><subject>Molecular Sequence Data</subject><subject>Protein Conformation</subject><subject>Staphylococcus aureus</subject><subject>Staphylococcus aureus - enzymology</subject><subject>Staphylococcus aureus - metabolism</subject><subject>Structure-Activity Relationship</subject><subject>Substrate Specificity</subject><issn>0969-2126</issn><issn>1878-4186</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc-KFDEQxoMo7rj6AF6kjx7sNpV0J90Kgiy7OrCguOo1pJPqnQw9ndkkPTBv47P4ZGaYcdGLeCqo-n1f_SPkOdAKKIjX6yqmUDEKrKK8osAfkAW0si1raMVDsqCd6EoGTJyRJzGuKaWsofQxOWOskR2ruwWJN0lvV_vRG2_MHAs9B8zhSvfLN8VyWrneJeenV8XN3OdmOmHxBY2_nU5pPdnis084JafHYrnZjs7oQykWgw_Z4eeP727ni8sYj4xL-6fk0aDHiM9O8Zx8u7r8evGxvP70YXnx_ro0tWh4KaRsGpADcOxFK7kYRKfFIA0dWG25ZNRaZkwP2lrRdgNKaLSpQTatphQ1Pyfvjr7bud-gNXmAoEe1DW6jw1557dTflcmt1K3fKc6lyL2zwcuTQfB3M8akNi4aHEc9oZ-jAspbVgvg4j9Q4LIRXd1mFI6oCT7GgMP9REAPnFBrlU-tDn9VlKuszJoXf65yr_j9yAy8PQKYD7pzGFQ0DieD1gU0SVnv_mH_C4XZtnY</recordid><startdate>20120509</startdate><enddate>20120509</enddate><creator>Schiebel, Johannes</creator><creator>Chang, Andrew</creator><creator>Lu, Hao</creator><creator>Baxter, Michael V.</creator><creator>Tonge, Peter J.</creator><creator>Kisker, Caroline</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>C1K</scope><scope>5PM</scope></search><sort><creationdate>20120509</creationdate><title>Staphylococcus aureus FabI: Inhibition, Substrate Recognition, and Potential Implications for In Vivo Essentiality</title><author>Schiebel, Johannes ; Chang, Andrew ; Lu, Hao ; Baxter, Michael V. ; Tonge, Peter J. ; Kisker, Caroline</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4653-6775517f13eb68736f69a6f7c0f24d3720dd2ccb1add689fe715ac41758a00ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amino Acid Sequence</topic><topic>Bacterial Proteins - antagonists &amp; inhibitors</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - antagonists &amp; inhibitors</topic><topic>Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - chemistry</topic><topic>Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - metabolism</topic><topic>Fatty Acids - metabolism</topic><topic>Kinetics</topic><topic>Ligands</topic><topic>Molecular Sequence Data</topic><topic>Protein Conformation</topic><topic>Staphylococcus aureus</topic><topic>Staphylococcus aureus - enzymology</topic><topic>Staphylococcus aureus - metabolism</topic><topic>Structure-Activity Relationship</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schiebel, Johannes</creatorcontrib><creatorcontrib>Chang, Andrew</creatorcontrib><creatorcontrib>Lu, Hao</creatorcontrib><creatorcontrib>Baxter, Michael V.</creatorcontrib><creatorcontrib>Tonge, Peter J.</creatorcontrib><creatorcontrib>Kisker, Caroline</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Structure (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schiebel, Johannes</au><au>Chang, Andrew</au><au>Lu, Hao</au><au>Baxter, Michael V.</au><au>Tonge, Peter J.</au><au>Kisker, Caroline</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Staphylococcus aureus FabI: Inhibition, Substrate Recognition, and Potential Implications for In Vivo Essentiality</atitle><jtitle>Structure (London)</jtitle><addtitle>Structure</addtitle><date>2012-05-09</date><risdate>2012</risdate><volume>20</volume><issue>5</issue><spage>802</spage><epage>813</epage><pages>802-813</pages><issn>0969-2126</issn><eissn>1878-4186</eissn><abstract>Methicillin-resistant Staphylococcus aureus (MRSA) infections constitute a serious health threat worldwide, and novel antibiotics are therefore urgently needed. The enoyl-ACP reductase (saFabI) is essential for the S. aureus fatty acid biosynthesis and, hence, serves as an attractive drug target. We have obtained a series of snapshots of this enzyme that provide a mechanistic picture of ligand and inhibitor binding, including a dimer-tetramer transition combined with extensive conformational changes. Significantly, our results reveal key differences in ligand binding and recognition compared to orthologous proteins. The remarkable observed protein flexibility rationalizes our finding that saFabI is capable of efficiently reducing branched-chain fatty acid precursors. Importantly, branched-chain fatty acids represent a major fraction of the S. aureus cell membrane and are crucial for its in vivo fitness. Our discovery thus addresses a long-standing controversy regarding the essentiality of the fatty acid biosynthesis pathway in S. aureus rationalizing saFabI as a drug target. [Display omitted] ► Insights into saFabI ligand binding including a dimer-tetramer transition ► Identification of a loop motif that determines altered cofactor specificity ► Increased flexibility modulates substrate and inhibitor recognition ► Ability of saFabI to reduce branched-chain fatty acid precursor molecules</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22579249</pmid><doi>10.1016/j.str.2012.03.013</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0969-2126
ispartof Structure (London), 2012-05, Vol.20 (5), p.802-813
issn 0969-2126
1878-4186
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3376755
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Bacterial Proteins - antagonists & inhibitors
Bacterial Proteins - chemistry
Bacterial Proteins - metabolism
Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - antagonists & inhibitors
Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - chemistry
Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) - metabolism
Fatty Acids - metabolism
Kinetics
Ligands
Molecular Sequence Data
Protein Conformation
Staphylococcus aureus
Staphylococcus aureus - enzymology
Staphylococcus aureus - metabolism
Structure-Activity Relationship
Substrate Specificity
title Staphylococcus aureus FabI: Inhibition, Substrate Recognition, and Potential Implications for In Vivo Essentiality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A20%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Staphylococcus%20aureus%20FabI:%20Inhibition,%20Substrate%20Recognition,%20and%20Potential%20Implications%20for%20In%C2%A0Vivo%20Essentiality&rft.jtitle=Structure%20(London)&rft.au=Schiebel,%20Johannes&rft.date=2012-05-09&rft.volume=20&rft.issue=5&rft.spage=802&rft.epage=813&rft.pages=802-813&rft.issn=0969-2126&rft.eissn=1878-4186&rft_id=info:doi/10.1016/j.str.2012.03.013&rft_dat=%3Cproquest_pubme%3E1038246136%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1013756948&rft_id=info:pmid/22579249&rft_els_id=S096921261200130X&rfr_iscdi=true