Improved Atomistic Monte Carlo Simulations Demonstrate That Poly-l-Proline Adopts Heterogeneous Ensembles of Conformations of Semi-Rigid Segments Interrupted by Kinks

Poly-l-proline (PLP) polymers are useful mimics of biologically relevant proline-rich sequences. Biophysical and computational studies of PLP polymers in aqueous solutions are challenging because of the diversity of length scales and the slow time scales for conformational conversions. We describe a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2012-06, Vol.116 (23), p.6862-6871
Hauptverfasser: Radhakrishnan, Aditya, Vitalis, Andreas, Mao, Albert H, Steffen, Adam T, Pappu, Rohit V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6871
container_issue 23
container_start_page 6862
container_title The journal of physical chemistry. B
container_volume 116
creator Radhakrishnan, Aditya
Vitalis, Andreas
Mao, Albert H
Steffen, Adam T
Pappu, Rohit V
description Poly-l-proline (PLP) polymers are useful mimics of biologically relevant proline-rich sequences. Biophysical and computational studies of PLP polymers in aqueous solutions are challenging because of the diversity of length scales and the slow time scales for conformational conversions. We describe an atomistic simulation approach that combines an improved ABSINTH implicit solvation model, with conformational sampling based on standard and novel Metropolis Monte Carlo moves. Refinements to forcefield parameters were guided by published experimental data for proline-rich systems. We assessed the validity of our simulation results through quantitative comparisons to experimental data that were not used in refining the forcefield parameters. Our analysis shows that PLP polymers form heterogeneous ensembles of conformations characterized by semirigid, rod-like segments interrupted by kinks, which result from a combination of internal cis peptide bonds, flexible backbone ψ angles, and the coupling between ring puckering and backbone degrees of freedom.
doi_str_mv 10.1021/jp212637r
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3376247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753471785</sourcerecordid><originalsourceid>FETCH-LOGICAL-a438t-36f9d80389acbec5f273e8d16b097478f59b90980df8639b40164ccdea8e2cee3</originalsourceid><addsrcrecordid>eNqFks9u1DAQxi0EomXhwAsgX5DgEPCfxHYuSKul0BVFVLScIyeZbL3YcWo7lfaFeE5cdlmBhMTBmpHnN58_j43Qc0reUMLo2-3EKBNchgfolFaMFHnJh4dcUCJO0JMYt4SwiinxGJ0wxlktKnWKfqzdFPwd9HiZvDMxmQ5_9mMCvNLBenxl3Gx1Mn6M-D24HFLQuXp9oxO-9HZX2OIyeGtGwMveTynic0gQ_AZG8HPEZ2ME11qI2A945cfBB3fQyxtX4Ezx1WxMn9ONgzH3r_PpIcxTyqbaHf5kxu_xKXo0aBvh2SEu0LcPZ9er8-Liy8f1anlR6JKrVHAx1L0iXNW6a6GrBiY5qJ6KltSylGqo6rYmtSL9oASv25JQUXZdD1oB6wD4Ar3b605z66DvsqGgbTMF43TYNV6b5u_KaG6ajb9rOJeClTILvDoIBH87Q0xNHmoH1upf42iorHgpqVTV_1HCiGLqvmOBXu_RLvgYAwxHR5Tcc7Q5foHMvvjzCkfy95tn4OUe0F1stn4OY57oP4R-AuBgvLs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1020828175</pqid></control><display><type>article</type><title>Improved Atomistic Monte Carlo Simulations Demonstrate That Poly-l-Proline Adopts Heterogeneous Ensembles of Conformations of Semi-Rigid Segments Interrupted by Kinks</title><source>MEDLINE</source><source>ACS Publications</source><creator>Radhakrishnan, Aditya ; Vitalis, Andreas ; Mao, Albert H ; Steffen, Adam T ; Pappu, Rohit V</creator><creatorcontrib>Radhakrishnan, Aditya ; Vitalis, Andreas ; Mao, Albert H ; Steffen, Adam T ; Pappu, Rohit V</creatorcontrib><description>Poly-l-proline (PLP) polymers are useful mimics of biologically relevant proline-rich sequences. Biophysical and computational studies of PLP polymers in aqueous solutions are challenging because of the diversity of length scales and the slow time scales for conformational conversions. We describe an atomistic simulation approach that combines an improved ABSINTH implicit solvation model, with conformational sampling based on standard and novel Metropolis Monte Carlo moves. Refinements to forcefield parameters were guided by published experimental data for proline-rich systems. We assessed the validity of our simulation results through quantitative comparisons to experimental data that were not used in refining the forcefield parameters. Our analysis shows that PLP polymers form heterogeneous ensembles of conformations characterized by semirigid, rod-like segments interrupted by kinks, which result from a combination of internal cis peptide bonds, flexible backbone ψ angles, and the coupling between ring puckering and backbone degrees of freedom.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp212637r</identifier><identifier>PMID: 22329658</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Backbone ; Computer simulation ; Mathematical models ; Molecular Dynamics Simulation ; Monte Carlo Method ; Monte Carlo methods ; Peptides - chemistry ; Polymers ; Protein Conformation ; Sampling ; Segments ; Solvation</subject><ispartof>The journal of physical chemistry. B, 2012-06, Vol.116 (23), p.6862-6871</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a438t-36f9d80389acbec5f273e8d16b097478f59b90980df8639b40164ccdea8e2cee3</citedby><cites>FETCH-LOGICAL-a438t-36f9d80389acbec5f273e8d16b097478f59b90980df8639b40164ccdea8e2cee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp212637r$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp212637r$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22329658$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Radhakrishnan, Aditya</creatorcontrib><creatorcontrib>Vitalis, Andreas</creatorcontrib><creatorcontrib>Mao, Albert H</creatorcontrib><creatorcontrib>Steffen, Adam T</creatorcontrib><creatorcontrib>Pappu, Rohit V</creatorcontrib><title>Improved Atomistic Monte Carlo Simulations Demonstrate That Poly-l-Proline Adopts Heterogeneous Ensembles of Conformations of Semi-Rigid Segments Interrupted by Kinks</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Poly-l-proline (PLP) polymers are useful mimics of biologically relevant proline-rich sequences. Biophysical and computational studies of PLP polymers in aqueous solutions are challenging because of the diversity of length scales and the slow time scales for conformational conversions. We describe an atomistic simulation approach that combines an improved ABSINTH implicit solvation model, with conformational sampling based on standard and novel Metropolis Monte Carlo moves. Refinements to forcefield parameters were guided by published experimental data for proline-rich systems. We assessed the validity of our simulation results through quantitative comparisons to experimental data that were not used in refining the forcefield parameters. Our analysis shows that PLP polymers form heterogeneous ensembles of conformations characterized by semirigid, rod-like segments interrupted by kinks, which result from a combination of internal cis peptide bonds, flexible backbone ψ angles, and the coupling between ring puckering and backbone degrees of freedom.</description><subject>Backbone</subject><subject>Computer simulation</subject><subject>Mathematical models</subject><subject>Molecular Dynamics Simulation</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo methods</subject><subject>Peptides - chemistry</subject><subject>Polymers</subject><subject>Protein Conformation</subject><subject>Sampling</subject><subject>Segments</subject><subject>Solvation</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks9u1DAQxi0EomXhwAsgX5DgEPCfxHYuSKul0BVFVLScIyeZbL3YcWo7lfaFeE5cdlmBhMTBmpHnN58_j43Qc0reUMLo2-3EKBNchgfolFaMFHnJh4dcUCJO0JMYt4SwiinxGJ0wxlktKnWKfqzdFPwd9HiZvDMxmQ5_9mMCvNLBenxl3Gx1Mn6M-D24HFLQuXp9oxO-9HZX2OIyeGtGwMveTynic0gQ_AZG8HPEZ2ME11qI2A945cfBB3fQyxtX4Ezx1WxMn9ONgzH3r_PpIcxTyqbaHf5kxu_xKXo0aBvh2SEu0LcPZ9er8-Liy8f1anlR6JKrVHAx1L0iXNW6a6GrBiY5qJ6KltSylGqo6rYmtSL9oASv25JQUXZdD1oB6wD4Ar3b605z66DvsqGgbTMF43TYNV6b5u_KaG6ajb9rOJeClTILvDoIBH87Q0xNHmoH1upf42iorHgpqVTV_1HCiGLqvmOBXu_RLvgYAwxHR5Tcc7Q5foHMvvjzCkfy95tn4OUe0F1stn4OY57oP4R-AuBgvLs</recordid><startdate>20120614</startdate><enddate>20120614</enddate><creator>Radhakrishnan, Aditya</creator><creator>Vitalis, Andreas</creator><creator>Mao, Albert H</creator><creator>Steffen, Adam T</creator><creator>Pappu, Rohit V</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20120614</creationdate><title>Improved Atomistic Monte Carlo Simulations Demonstrate That Poly-l-Proline Adopts Heterogeneous Ensembles of Conformations of Semi-Rigid Segments Interrupted by Kinks</title><author>Radhakrishnan, Aditya ; Vitalis, Andreas ; Mao, Albert H ; Steffen, Adam T ; Pappu, Rohit V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a438t-36f9d80389acbec5f273e8d16b097478f59b90980df8639b40164ccdea8e2cee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Backbone</topic><topic>Computer simulation</topic><topic>Mathematical models</topic><topic>Molecular Dynamics Simulation</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo methods</topic><topic>Peptides - chemistry</topic><topic>Polymers</topic><topic>Protein Conformation</topic><topic>Sampling</topic><topic>Segments</topic><topic>Solvation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radhakrishnan, Aditya</creatorcontrib><creatorcontrib>Vitalis, Andreas</creatorcontrib><creatorcontrib>Mao, Albert H</creatorcontrib><creatorcontrib>Steffen, Adam T</creatorcontrib><creatorcontrib>Pappu, Rohit V</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radhakrishnan, Aditya</au><au>Vitalis, Andreas</au><au>Mao, Albert H</au><au>Steffen, Adam T</au><au>Pappu, Rohit V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Atomistic Monte Carlo Simulations Demonstrate That Poly-l-Proline Adopts Heterogeneous Ensembles of Conformations of Semi-Rigid Segments Interrupted by Kinks</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2012-06-14</date><risdate>2012</risdate><volume>116</volume><issue>23</issue><spage>6862</spage><epage>6871</epage><pages>6862-6871</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Poly-l-proline (PLP) polymers are useful mimics of biologically relevant proline-rich sequences. Biophysical and computational studies of PLP polymers in aqueous solutions are challenging because of the diversity of length scales and the slow time scales for conformational conversions. We describe an atomistic simulation approach that combines an improved ABSINTH implicit solvation model, with conformational sampling based on standard and novel Metropolis Monte Carlo moves. Refinements to forcefield parameters were guided by published experimental data for proline-rich systems. We assessed the validity of our simulation results through quantitative comparisons to experimental data that were not used in refining the forcefield parameters. Our analysis shows that PLP polymers form heterogeneous ensembles of conformations characterized by semirigid, rod-like segments interrupted by kinks, which result from a combination of internal cis peptide bonds, flexible backbone ψ angles, and the coupling between ring puckering and backbone degrees of freedom.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>22329658</pmid><doi>10.1021/jp212637r</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2012-06, Vol.116 (23), p.6862-6871
issn 1520-6106
1520-5207
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3376247
source MEDLINE; ACS Publications
subjects Backbone
Computer simulation
Mathematical models
Molecular Dynamics Simulation
Monte Carlo Method
Monte Carlo methods
Peptides - chemistry
Polymers
Protein Conformation
Sampling
Segments
Solvation
title Improved Atomistic Monte Carlo Simulations Demonstrate That Poly-l-Proline Adopts Heterogeneous Ensembles of Conformations of Semi-Rigid Segments Interrupted by Kinks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Atomistic%20Monte%20Carlo%20Simulations%20Demonstrate%20That%20Poly-l-Proline%20Adopts%20Heterogeneous%20Ensembles%20of%20Conformations%20of%20Semi-Rigid%20Segments%20Interrupted%20by%20Kinks&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Radhakrishnan,%20Aditya&rft.date=2012-06-14&rft.volume=116&rft.issue=23&rft.spage=6862&rft.epage=6871&rft.pages=6862-6871&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp212637r&rft_dat=%3Cproquest_pubme%3E1753471785%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1020828175&rft_id=info:pmid/22329658&rfr_iscdi=true