pH replica-exchange method based on discrete protonation states

We propose a new algorithm for obtaining proton titration curves of ionizable residues. The algorithm is a pH replica‐exchange method (PHREM), which is based on the constant pH algorithm of Mongan et al. (J Comput Chem 2004;25:2038–2048). In the original replica‐exchange method, simulations of diffe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2011-12, Vol.79 (12), p.3420-3436
Hauptverfasser: Itoh, Satoru G., Damjanović, Ana, Brooks, Bernard R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3436
container_issue 12
container_start_page 3420
container_title Proteins, structure, function, and bioinformatics
container_volume 79
creator Itoh, Satoru G.
Damjanović, Ana
Brooks, Bernard R.
description We propose a new algorithm for obtaining proton titration curves of ionizable residues. The algorithm is a pH replica‐exchange method (PHREM), which is based on the constant pH algorithm of Mongan et al. (J Comput Chem 2004;25:2038–2048). In the original replica‐exchange method, simulations of different replicas are performed at different temperatures, and the temperatures are exchanged between the replicas. In our PHREM, simulations of different replicas are performed at different pH values, and the pHs are exchanged between the replicas. The PHREM was applied to a blocked amino acid and to two protein systems (snake cardiotoxin and turkey ovomucoid third domain), in conjunction with a generalized Born implicit solvent. The performance and accuracy of this algorithm and the original constant pH method (PHMD) were compared. For a single set of simulations at different pHs, the use of PHREM yields more accurate Hill coefficients of titratable residues. By performing multiple sets of constant pH simulations started with different initial states, the accuracy of predicted pKa values and Hill coefficients obtained with PHREM and PHMD methods becomes comparable. However, the PHREM algorithm exhibits better samplings of the protonation states of titratable residues and less scatter of the titration points and thus better precision of measured pKa values and Hill coefficients. In addition, PHREM exhibits faster convergence of individual simulations than the original constant pH algorithm. Proteins 2011; © 2011 Wiley‐Liss, Inc.
doi_str_mv 10.1002/prot.23176
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3373023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3282306181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5846-8f631fc4c334e7c8da7f2500abad15f068e04f7735762654d29ead78bc0a42a83</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EokPLhh-AIrGpkFKu384GhCpoQRUFVFR2lse56aRk4tT2QPvv8XTaEbBgZen6O-c-DiHPKBxQAPZqiiEfME61ekBmFBpdA-XiIZmBMbrm0sgd8iSlSwBQDVePyQ5jRWeAzsib6biKOA29dzVe-4UbL7BaYl6Etpq7hG0Vxqrtk4-YsVp3CqPLfSmm7DKmPfKoc0PCp3fvLvn2_t3Z4XF9cnr04fDtSe2lEao2neK088JzLlB70zrdMQng5q6lsgNlEESnNZdaMSVFyxp0rTZzD04wZ_gueb3xnVbzJbYexxzdYKfYL128scH19u-fsV_Yi_DTcq45MF4M9u8MYrhaYcp2WbbCYXAjhlWyVLKmEUIyUdAX_6CXYRXHsl6hqGGKQaMK9XJD-RhSithth6Fg17nY9bXsbS4Ffv7n-Fv0PogC0A3wqx_w5j9W9vPX07N703qj6VPG663GxR9Waa6lPf90ZL9zyfgXdm4_8t9q76eE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1518262096</pqid></control><display><type>article</type><title>pH replica-exchange method based on discrete protonation states</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Itoh, Satoru G. ; Damjanović, Ana ; Brooks, Bernard R.</creator><creatorcontrib>Itoh, Satoru G. ; Damjanović, Ana ; Brooks, Bernard R.</creatorcontrib><description>We propose a new algorithm for obtaining proton titration curves of ionizable residues. The algorithm is a pH replica‐exchange method (PHREM), which is based on the constant pH algorithm of Mongan et al. (J Comput Chem 2004;25:2038–2048). In the original replica‐exchange method, simulations of different replicas are performed at different temperatures, and the temperatures are exchanged between the replicas. In our PHREM, simulations of different replicas are performed at different pH values, and the pHs are exchanged between the replicas. The PHREM was applied to a blocked amino acid and to two protein systems (snake cardiotoxin and turkey ovomucoid third domain), in conjunction with a generalized Born implicit solvent. The performance and accuracy of this algorithm and the original constant pH method (PHMD) were compared. For a single set of simulations at different pHs, the use of PHREM yields more accurate Hill coefficients of titratable residues. By performing multiple sets of constant pH simulations started with different initial states, the accuracy of predicted pKa values and Hill coefficients obtained with PHREM and PHMD methods becomes comparable. However, the PHREM algorithm exhibits better samplings of the protonation states of titratable residues and less scatter of the titration points and thus better precision of measured pKa values and Hill coefficients. In addition, PHREM exhibits faster convergence of individual simulations than the original constant pH algorithm. Proteins 2011; © 2011 Wiley‐Liss, Inc.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.23176</identifier><identifier>PMID: 22002801</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Algorithms ; Amino Acids - chemistry ; Amino Acids - metabolism ; Cobra Cardiotoxin Proteins - chemistry ; Cobra Cardiotoxin Proteins - metabolism ; Computer Simulation ; free energy ; generalized ensemble algorithm ; Hydrogen-Ion Concentration ; Models, Chemical ; Models, Molecular ; molecular dynamics ; Monte Carlo ; Ovomucin - chemistry ; Ovomucin - metabolism ; pKa calculation ; Protein Conformation ; Protein Structure, Tertiary ; Proteins - chemistry ; Proteins - metabolism ; Protons ; Static Electricity ; Temperature</subject><ispartof>Proteins, structure, function, and bioinformatics, 2011-12, Vol.79 (12), p.3420-3436</ispartof><rights>Copyright © 2011 Wiley‐Liss, Inc.</rights><rights>Copyright © 2011 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5846-8f631fc4c334e7c8da7f2500abad15f068e04f7735762654d29ead78bc0a42a83</citedby><cites>FETCH-LOGICAL-c5846-8f631fc4c334e7c8da7f2500abad15f068e04f7735762654d29ead78bc0a42a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprot.23176$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprot.23176$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22002801$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Itoh, Satoru G.</creatorcontrib><creatorcontrib>Damjanović, Ana</creatorcontrib><creatorcontrib>Brooks, Bernard R.</creatorcontrib><title>pH replica-exchange method based on discrete protonation states</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>We propose a new algorithm for obtaining proton titration curves of ionizable residues. The algorithm is a pH replica‐exchange method (PHREM), which is based on the constant pH algorithm of Mongan et al. (J Comput Chem 2004;25:2038–2048). In the original replica‐exchange method, simulations of different replicas are performed at different temperatures, and the temperatures are exchanged between the replicas. In our PHREM, simulations of different replicas are performed at different pH values, and the pHs are exchanged between the replicas. The PHREM was applied to a blocked amino acid and to two protein systems (snake cardiotoxin and turkey ovomucoid third domain), in conjunction with a generalized Born implicit solvent. The performance and accuracy of this algorithm and the original constant pH method (PHMD) were compared. For a single set of simulations at different pHs, the use of PHREM yields more accurate Hill coefficients of titratable residues. By performing multiple sets of constant pH simulations started with different initial states, the accuracy of predicted pKa values and Hill coefficients obtained with PHREM and PHMD methods becomes comparable. However, the PHREM algorithm exhibits better samplings of the protonation states of titratable residues and less scatter of the titration points and thus better precision of measured pKa values and Hill coefficients. In addition, PHREM exhibits faster convergence of individual simulations than the original constant pH algorithm. Proteins 2011; © 2011 Wiley‐Liss, Inc.</description><subject>Algorithms</subject><subject>Amino Acids - chemistry</subject><subject>Amino Acids - metabolism</subject><subject>Cobra Cardiotoxin Proteins - chemistry</subject><subject>Cobra Cardiotoxin Proteins - metabolism</subject><subject>Computer Simulation</subject><subject>free energy</subject><subject>generalized ensemble algorithm</subject><subject>Hydrogen-Ion Concentration</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>molecular dynamics</subject><subject>Monte Carlo</subject><subject>Ovomucin - chemistry</subject><subject>Ovomucin - metabolism</subject><subject>pKa calculation</subject><subject>Protein Conformation</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins - chemistry</subject><subject>Proteins - metabolism</subject><subject>Protons</subject><subject>Static Electricity</subject><subject>Temperature</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtv1DAUhS0EokPLhh-AIrGpkFKu384GhCpoQRUFVFR2lse56aRk4tT2QPvv8XTaEbBgZen6O-c-DiHPKBxQAPZqiiEfME61ekBmFBpdA-XiIZmBMbrm0sgd8iSlSwBQDVePyQ5jRWeAzsib6biKOA29dzVe-4UbL7BaYl6Etpq7hG0Vxqrtk4-YsVp3CqPLfSmm7DKmPfKoc0PCp3fvLvn2_t3Z4XF9cnr04fDtSe2lEao2neK088JzLlB70zrdMQng5q6lsgNlEESnNZdaMSVFyxp0rTZzD04wZ_gueb3xnVbzJbYexxzdYKfYL128scH19u-fsV_Yi_DTcq45MF4M9u8MYrhaYcp2WbbCYXAjhlWyVLKmEUIyUdAX_6CXYRXHsl6hqGGKQaMK9XJD-RhSithth6Fg17nY9bXsbS4Ffv7n-Fv0PogC0A3wqx_w5j9W9vPX07N703qj6VPG663GxR9Waa6lPf90ZL9zyfgXdm4_8t9q76eE</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Itoh, Satoru G.</creator><creator>Damjanović, Ana</creator><creator>Brooks, Bernard R.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>201112</creationdate><title>pH replica-exchange method based on discrete protonation states</title><author>Itoh, Satoru G. ; Damjanović, Ana ; Brooks, Bernard R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5846-8f631fc4c334e7c8da7f2500abad15f068e04f7735762654d29ead78bc0a42a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Amino Acids - chemistry</topic><topic>Amino Acids - metabolism</topic><topic>Cobra Cardiotoxin Proteins - chemistry</topic><topic>Cobra Cardiotoxin Proteins - metabolism</topic><topic>Computer Simulation</topic><topic>free energy</topic><topic>generalized ensemble algorithm</topic><topic>Hydrogen-Ion Concentration</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>molecular dynamics</topic><topic>Monte Carlo</topic><topic>Ovomucin - chemistry</topic><topic>Ovomucin - metabolism</topic><topic>pKa calculation</topic><topic>Protein Conformation</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins - chemistry</topic><topic>Proteins - metabolism</topic><topic>Protons</topic><topic>Static Electricity</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Itoh, Satoru G.</creatorcontrib><creatorcontrib>Damjanović, Ana</creatorcontrib><creatorcontrib>Brooks, Bernard R.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Itoh, Satoru G.</au><au>Damjanović, Ana</au><au>Brooks, Bernard R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>pH replica-exchange method based on discrete protonation states</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2011-12</date><risdate>2011</risdate><volume>79</volume><issue>12</issue><spage>3420</spage><epage>3436</epage><pages>3420-3436</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>We propose a new algorithm for obtaining proton titration curves of ionizable residues. The algorithm is a pH replica‐exchange method (PHREM), which is based on the constant pH algorithm of Mongan et al. (J Comput Chem 2004;25:2038–2048). In the original replica‐exchange method, simulations of different replicas are performed at different temperatures, and the temperatures are exchanged between the replicas. In our PHREM, simulations of different replicas are performed at different pH values, and the pHs are exchanged between the replicas. The PHREM was applied to a blocked amino acid and to two protein systems (snake cardiotoxin and turkey ovomucoid third domain), in conjunction with a generalized Born implicit solvent. The performance and accuracy of this algorithm and the original constant pH method (PHMD) were compared. For a single set of simulations at different pHs, the use of PHREM yields more accurate Hill coefficients of titratable residues. By performing multiple sets of constant pH simulations started with different initial states, the accuracy of predicted pKa values and Hill coefficients obtained with PHREM and PHMD methods becomes comparable. However, the PHREM algorithm exhibits better samplings of the protonation states of titratable residues and less scatter of the titration points and thus better precision of measured pKa values and Hill coefficients. In addition, PHREM exhibits faster convergence of individual simulations than the original constant pH algorithm. Proteins 2011; © 2011 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>22002801</pmid><doi>10.1002/prot.23176</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0887-3585
ispartof Proteins, structure, function, and bioinformatics, 2011-12, Vol.79 (12), p.3420-3436
issn 0887-3585
1097-0134
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3373023
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Amino Acids - chemistry
Amino Acids - metabolism
Cobra Cardiotoxin Proteins - chemistry
Cobra Cardiotoxin Proteins - metabolism
Computer Simulation
free energy
generalized ensemble algorithm
Hydrogen-Ion Concentration
Models, Chemical
Models, Molecular
molecular dynamics
Monte Carlo
Ovomucin - chemistry
Ovomucin - metabolism
pKa calculation
Protein Conformation
Protein Structure, Tertiary
Proteins - chemistry
Proteins - metabolism
Protons
Static Electricity
Temperature
title pH replica-exchange method based on discrete protonation states
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A14%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=pH%20replica-exchange%20method%20based%20on%20discrete%20protonation%20states&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Itoh,%20Satoru%20G.&rft.date=2011-12&rft.volume=79&rft.issue=12&rft.spage=3420&rft.epage=3436&rft.pages=3420-3436&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.23176&rft_dat=%3Cproquest_pubme%3E3282306181%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1518262096&rft_id=info:pmid/22002801&rfr_iscdi=true