MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins
Molecular recognition features (MoRFs) are short binding regions located within longer intrinsically disordered regions that bind to protein partners via disorder-to-order transitions. MoRFs are implicated in important processes including signaling and regulation. However, only a limited number of e...
Gespeichert in:
Veröffentlicht in: | Bioinformatics (Oxford, England) England), 2012-06, Vol.28 (12), p.i75-i83 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | i83 |
---|---|
container_issue | 12 |
container_start_page | i75 |
container_title | Bioinformatics (Oxford, England) |
container_volume | 28 |
creator | Disfani, Fatemeh Miri Hsu, Wei-Lun Mizianty, Marcin J Oldfield, Christopher J Xue, Bin Dunker, A Keith Uversky, Vladimir N Kurgan, Lukasz |
description | Molecular recognition features (MoRFs) are short binding regions located within longer intrinsically disordered regions that bind to protein partners via disorder-to-order transitions. MoRFs are implicated in important processes including signaling and regulation. However, only a limited number of experimentally validated MoRFs is known, which motivates development of computational methods that predict MoRFs from protein chains.
We introduce a new MoRF predictor, MoRFpred, which identifies all MoRF types (α, β, coil and complex). We develop a comprehensive dataset of annotated MoRFs to build and empirically compare our method. MoRFpred utilizes a novel design in which annotations generated by sequence alignment are fused with predictions generated by a Support Vector Machine (SVM), which uses a custom designed set of sequence-derived features. The features provide information about evolutionary profiles, selected physiochemical properties of amino acids, and predicted disorder, solvent accessibility and B-factors. Empirical evaluation on several datasets shows that MoRFpred outperforms related methods: α-MoRF-Pred that predicts α-MoRFs and ANCHOR which finds disordered regions that become ordered when bound to a globular partner. We show that our predicted (new) MoRF regions have non-random sequence similarity with native MoRFs. We use this observation along with the fact that predictions with higher probability are more accurate to identify putative MoRF regions. We also identify a few sequence-derived hallmarks of MoRFs. They are characterized by dips in the disorder predictions and higher hydrophobicity and stability when compared to adjacent (in the chain) residues.
http://biomine.ece.ualberta.ca/MoRFpred/; http://biomine.ece.ualberta.ca/MoRFpred/Supplement.pdf. |
doi_str_mv | 10.1093/bioinformatics/bts209 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3371841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1020189140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-b80e3283aa80a4fdd8972d6930cdad07ed3b6b329d3ef062853f5d38eae9fda43</originalsourceid><addsrcrecordid>eNpVkctOHDEQRa0oKBCST0jkZRY0-NEP9yZShEKCBEJCZG1V29Uzjrrtie2JFD6E78XNkBGsqmTfe6rsS8gnzk456-XZ4ILzY4gzZGfS2ZCTYP0bcsRl21W14vztvmfykLxP6TdjrGFN-44cCtGqvlPiiDxch9uLTUR7QoGaMG-2uQCDh4nmECZaJtCEf7boDVYDJLR0UTuziCh4S80aIpiM0d0_OWkYaVqHmKl1KUSLscqhempojuCTW1TOr-jgvF1qxFU5SdT5wg4ZnU8fyMEIU8KPz_WY_Lr4fnf-s7q6-XF5_u2qMnXX5WpQDKVQEkAxqEdry6uEbXvJjAXLOrRyaAcpeitxZK1QjRwbKxUC9qOFWh6TrzvuZjvMaA36suKkN9HNEP_pAE6_vvFurVfhr5ay46rmBfDlGRBD-aWU9eySwWkCj2GbNGeCcdXzmhVps5OaGFKKOO7HcKaXTPXrTPUu0-L7_HLHvet_iPIRB7Gp8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1020189140</pqid></control><display><type>article</type><title>MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins</title><source>MEDLINE</source><source>Access via Oxford University Press (Open Access Collection)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Disfani, Fatemeh Miri ; Hsu, Wei-Lun ; Mizianty, Marcin J ; Oldfield, Christopher J ; Xue, Bin ; Dunker, A Keith ; Uversky, Vladimir N ; Kurgan, Lukasz</creator><creatorcontrib>Disfani, Fatemeh Miri ; Hsu, Wei-Lun ; Mizianty, Marcin J ; Oldfield, Christopher J ; Xue, Bin ; Dunker, A Keith ; Uversky, Vladimir N ; Kurgan, Lukasz</creatorcontrib><description>Molecular recognition features (MoRFs) are short binding regions located within longer intrinsically disordered regions that bind to protein partners via disorder-to-order transitions. MoRFs are implicated in important processes including signaling and regulation. However, only a limited number of experimentally validated MoRFs is known, which motivates development of computational methods that predict MoRFs from protein chains.
We introduce a new MoRF predictor, MoRFpred, which identifies all MoRF types (α, β, coil and complex). We develop a comprehensive dataset of annotated MoRFs to build and empirically compare our method. MoRFpred utilizes a novel design in which annotations generated by sequence alignment are fused with predictions generated by a Support Vector Machine (SVM), which uses a custom designed set of sequence-derived features. The features provide information about evolutionary profiles, selected physiochemical properties of amino acids, and predicted disorder, solvent accessibility and B-factors. Empirical evaluation on several datasets shows that MoRFpred outperforms related methods: α-MoRF-Pred that predicts α-MoRFs and ANCHOR which finds disordered regions that become ordered when bound to a globular partner. We show that our predicted (new) MoRF regions have non-random sequence similarity with native MoRFs. We use this observation along with the fact that predictions with higher probability are more accurate to identify putative MoRF regions. We also identify a few sequence-derived hallmarks of MoRFs. They are characterized by dips in the disorder predictions and higher hydrophobicity and stability when compared to adjacent (in the chain) residues.
http://biomine.ece.ualberta.ca/MoRFpred/; http://biomine.ece.ualberta.ca/MoRFpred/Supplement.pdf.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/bts209</identifier><identifier>PMID: 22689782</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Amino Acids ; Binding Sites ; Computational Biology - methods ; Hydrophobic and Hydrophilic Interactions ; Molecular Sequence Annotation ; Original Papers ; Protein Structure, Secondary ; Proteins - analysis ; Sequence Alignment ; Support Vector Machine</subject><ispartof>Bioinformatics (Oxford, England), 2012-06, Vol.28 (12), p.i75-i83</ispartof><rights>The Author(s) 2012. Published by Oxford University Press. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-b80e3283aa80a4fdd8972d6930cdad07ed3b6b329d3ef062853f5d38eae9fda43</citedby><cites>FETCH-LOGICAL-c477t-b80e3283aa80a4fdd8972d6930cdad07ed3b6b329d3ef062853f5d38eae9fda43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3371841/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3371841/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22689782$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Disfani, Fatemeh Miri</creatorcontrib><creatorcontrib>Hsu, Wei-Lun</creatorcontrib><creatorcontrib>Mizianty, Marcin J</creatorcontrib><creatorcontrib>Oldfield, Christopher J</creatorcontrib><creatorcontrib>Xue, Bin</creatorcontrib><creatorcontrib>Dunker, A Keith</creatorcontrib><creatorcontrib>Uversky, Vladimir N</creatorcontrib><creatorcontrib>Kurgan, Lukasz</creatorcontrib><title>MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Molecular recognition features (MoRFs) are short binding regions located within longer intrinsically disordered regions that bind to protein partners via disorder-to-order transitions. MoRFs are implicated in important processes including signaling and regulation. However, only a limited number of experimentally validated MoRFs is known, which motivates development of computational methods that predict MoRFs from protein chains.
We introduce a new MoRF predictor, MoRFpred, which identifies all MoRF types (α, β, coil and complex). We develop a comprehensive dataset of annotated MoRFs to build and empirically compare our method. MoRFpred utilizes a novel design in which annotations generated by sequence alignment are fused with predictions generated by a Support Vector Machine (SVM), which uses a custom designed set of sequence-derived features. The features provide information about evolutionary profiles, selected physiochemical properties of amino acids, and predicted disorder, solvent accessibility and B-factors. Empirical evaluation on several datasets shows that MoRFpred outperforms related methods: α-MoRF-Pred that predicts α-MoRFs and ANCHOR which finds disordered regions that become ordered when bound to a globular partner. We show that our predicted (new) MoRF regions have non-random sequence similarity with native MoRFs. We use this observation along with the fact that predictions with higher probability are more accurate to identify putative MoRF regions. We also identify a few sequence-derived hallmarks of MoRFs. They are characterized by dips in the disorder predictions and higher hydrophobicity and stability when compared to adjacent (in the chain) residues.
http://biomine.ece.ualberta.ca/MoRFpred/; http://biomine.ece.ualberta.ca/MoRFpred/Supplement.pdf.</description><subject>Amino Acids</subject><subject>Binding Sites</subject><subject>Computational Biology - methods</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Molecular Sequence Annotation</subject><subject>Original Papers</subject><subject>Protein Structure, Secondary</subject><subject>Proteins - analysis</subject><subject>Sequence Alignment</subject><subject>Support Vector Machine</subject><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkctOHDEQRa0oKBCST0jkZRY0-NEP9yZShEKCBEJCZG1V29Uzjrrtie2JFD6E78XNkBGsqmTfe6rsS8gnzk456-XZ4ILzY4gzZGfS2ZCTYP0bcsRl21W14vztvmfykLxP6TdjrGFN-44cCtGqvlPiiDxch9uLTUR7QoGaMG-2uQCDh4nmECZaJtCEf7boDVYDJLR0UTuziCh4S80aIpiM0d0_OWkYaVqHmKl1KUSLscqhempojuCTW1TOr-jgvF1qxFU5SdT5wg4ZnU8fyMEIU8KPz_WY_Lr4fnf-s7q6-XF5_u2qMnXX5WpQDKVQEkAxqEdry6uEbXvJjAXLOrRyaAcpeitxZK1QjRwbKxUC9qOFWh6TrzvuZjvMaA36suKkN9HNEP_pAE6_vvFurVfhr5ay46rmBfDlGRBD-aWU9eySwWkCj2GbNGeCcdXzmhVps5OaGFKKOO7HcKaXTPXrTPUu0-L7_HLHvet_iPIRB7Gp8w</recordid><startdate>20120615</startdate><enddate>20120615</enddate><creator>Disfani, Fatemeh Miri</creator><creator>Hsu, Wei-Lun</creator><creator>Mizianty, Marcin J</creator><creator>Oldfield, Christopher J</creator><creator>Xue, Bin</creator><creator>Dunker, A Keith</creator><creator>Uversky, Vladimir N</creator><creator>Kurgan, Lukasz</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120615</creationdate><title>MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins</title><author>Disfani, Fatemeh Miri ; Hsu, Wei-Lun ; Mizianty, Marcin J ; Oldfield, Christopher J ; Xue, Bin ; Dunker, A Keith ; Uversky, Vladimir N ; Kurgan, Lukasz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-b80e3283aa80a4fdd8972d6930cdad07ed3b6b329d3ef062853f5d38eae9fda43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amino Acids</topic><topic>Binding Sites</topic><topic>Computational Biology - methods</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Molecular Sequence Annotation</topic><topic>Original Papers</topic><topic>Protein Structure, Secondary</topic><topic>Proteins - analysis</topic><topic>Sequence Alignment</topic><topic>Support Vector Machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Disfani, Fatemeh Miri</creatorcontrib><creatorcontrib>Hsu, Wei-Lun</creatorcontrib><creatorcontrib>Mizianty, Marcin J</creatorcontrib><creatorcontrib>Oldfield, Christopher J</creatorcontrib><creatorcontrib>Xue, Bin</creatorcontrib><creatorcontrib>Dunker, A Keith</creatorcontrib><creatorcontrib>Uversky, Vladimir N</creatorcontrib><creatorcontrib>Kurgan, Lukasz</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Disfani, Fatemeh Miri</au><au>Hsu, Wei-Lun</au><au>Mizianty, Marcin J</au><au>Oldfield, Christopher J</au><au>Xue, Bin</au><au>Dunker, A Keith</au><au>Uversky, Vladimir N</au><au>Kurgan, Lukasz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2012-06-15</date><risdate>2012</risdate><volume>28</volume><issue>12</issue><spage>i75</spage><epage>i83</epage><pages>i75-i83</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Molecular recognition features (MoRFs) are short binding regions located within longer intrinsically disordered regions that bind to protein partners via disorder-to-order transitions. MoRFs are implicated in important processes including signaling and regulation. However, only a limited number of experimentally validated MoRFs is known, which motivates development of computational methods that predict MoRFs from protein chains.
We introduce a new MoRF predictor, MoRFpred, which identifies all MoRF types (α, β, coil and complex). We develop a comprehensive dataset of annotated MoRFs to build and empirically compare our method. MoRFpred utilizes a novel design in which annotations generated by sequence alignment are fused with predictions generated by a Support Vector Machine (SVM), which uses a custom designed set of sequence-derived features. The features provide information about evolutionary profiles, selected physiochemical properties of amino acids, and predicted disorder, solvent accessibility and B-factors. Empirical evaluation on several datasets shows that MoRFpred outperforms related methods: α-MoRF-Pred that predicts α-MoRFs and ANCHOR which finds disordered regions that become ordered when bound to a globular partner. We show that our predicted (new) MoRF regions have non-random sequence similarity with native MoRFs. We use this observation along with the fact that predictions with higher probability are more accurate to identify putative MoRF regions. We also identify a few sequence-derived hallmarks of MoRFs. They are characterized by dips in the disorder predictions and higher hydrophobicity and stability when compared to adjacent (in the chain) residues.
http://biomine.ece.ualberta.ca/MoRFpred/; http://biomine.ece.ualberta.ca/MoRFpred/Supplement.pdf.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>22689782</pmid><doi>10.1093/bioinformatics/bts209</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics (Oxford, England), 2012-06, Vol.28 (12), p.i75-i83 |
issn | 1367-4803 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3371841 |
source | MEDLINE; Access via Oxford University Press (Open Access Collection); EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Amino Acids Binding Sites Computational Biology - methods Hydrophobic and Hydrophilic Interactions Molecular Sequence Annotation Original Papers Protein Structure, Secondary Proteins - analysis Sequence Alignment Support Vector Machine |
title | MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A10%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MoRFpred,%20a%20computational%20tool%20for%20sequence-based%20prediction%20and%20characterization%20of%20short%20disorder-to-order%20transitioning%20binding%20regions%20in%20proteins&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Disfani,%20Fatemeh%20Miri&rft.date=2012-06-15&rft.volume=28&rft.issue=12&rft.spage=i75&rft.epage=i83&rft.pages=i75-i83&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/bts209&rft_dat=%3Cproquest_pubme%3E1020189140%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1020189140&rft_id=info:pmid/22689782&rfr_iscdi=true |