RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair

Protein ubiquitylation and sumoylation play key roles in regulating cellular responses to DNA double-strand breaks (DSBs). Here, we show that human RNF4, a small ubiquitin-like modifier (SUMO)-targeted ubiquitin E3 ligase, is recruited to DSBs in a manner requiring its SUMO interaction motifs, the S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes & development 2012-06, Vol.26 (11), p.1179-1195
Hauptverfasser: Galanty, Yaron, Belotserkovskaya, Rimma, Coates, Julia, Jackson, Stephen P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1195
container_issue 11
container_start_page 1179
container_title Genes & development
container_volume 26
creator Galanty, Yaron
Belotserkovskaya, Rimma
Coates, Julia
Jackson, Stephen P
description Protein ubiquitylation and sumoylation play key roles in regulating cellular responses to DNA double-strand breaks (DSBs). Here, we show that human RNF4, a small ubiquitin-like modifier (SUMO)-targeted ubiquitin E3 ligase, is recruited to DSBs in a manner requiring its SUMO interaction motifs, the SUMO E3 ligases PIAS1 and PIAS4, and various DSB-responsive proteins. Furthermore, we reveal that RNF4 depletion impairs ubiquitin adduct formation at DSB sites and causes persistent histone H2AX phosphorylation (γH2AX) associated with defective DSB repair, hypersensitivity toward DSB-inducing agents, and delayed recovery from radiation-induced cell cycle arrest. We establish that RNF4 regulates turnover of the DSB-responsive factors MDC1 and replication protein A (RPA) at DNA damage sites and that RNF4-depleted cells fail to effectively replace RPA by the homologous recombination factors BRCA2 and RAD51 on resected DNA. Consistent with previous data showing that RNF4 targets proteins to the proteasome, we show that the proteasome component PSMD4 is recruited to DNA damage sites in a manner requiring its ubiquitin-interacting domains, RNF4 and RNF8. Finally, we establish that PSMD4 binds MDC1 and RPA1 in a DNA damage-induced, RNF4-dependent manner and that PSMD4 depletion cause MDC1 and γH2AX persistence in irradiated cells. RNF4 thus operates as a DSB response factor at the crossroads between the SUMO and ubiquitin systems.
doi_str_mv 10.1101/gad.188284.112
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3371407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1018636430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-83ee0c794a400ca0b7ce89e64627696719f92392214030b5207f5e1ff19d003f3</originalsourceid><addsrcrecordid>eNpVUbtOxDAQtBAIjkdLiVxSkGP9iB03SIi3xEPiUVtOsjkMueSwEyT-HqMDBNVqtLOzoxlCdhlMGQN2OHP1lBUFL2TCfIVMWC5NlkutV8kECgOZEcpskM0YXwBAgVLrZINzpRjnZkLu72_P5QF19OHp5i4bXJjhgDUdS_82-sF39EzQ1s9cxAO6CP28HzDS09tjWvdj2WIWh-C6mpYB3SsNuHA-bJO1xrURd77nFnk6P3s8ucyu7y6uTo6vs0rmasgKgQiVNtJJgMpBqSssDCqpuFZGaWYaw4XhnEkQUOYcdJMjaxpmagDRiC1ytNRdjOUc6wq75KW1i-DnLnzY3nn7f9P5Zzvr360QOmnqJLD_LRD6txHjYOc-Vti2rsN-jDblWyihpIBEnS6pVehjDNj8vmFgv4qwqQi7LCJhng72_pr7pf8kLz4BdYKCVw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1018636430</pqid></control><display><type>article</type><title>RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Galanty, Yaron ; Belotserkovskaya, Rimma ; Coates, Julia ; Jackson, Stephen P</creator><creatorcontrib>Galanty, Yaron ; Belotserkovskaya, Rimma ; Coates, Julia ; Jackson, Stephen P</creatorcontrib><description>Protein ubiquitylation and sumoylation play key roles in regulating cellular responses to DNA double-strand breaks (DSBs). Here, we show that human RNF4, a small ubiquitin-like modifier (SUMO)-targeted ubiquitin E3 ligase, is recruited to DSBs in a manner requiring its SUMO interaction motifs, the SUMO E3 ligases PIAS1 and PIAS4, and various DSB-responsive proteins. Furthermore, we reveal that RNF4 depletion impairs ubiquitin adduct formation at DSB sites and causes persistent histone H2AX phosphorylation (γH2AX) associated with defective DSB repair, hypersensitivity toward DSB-inducing agents, and delayed recovery from radiation-induced cell cycle arrest. We establish that RNF4 regulates turnover of the DSB-responsive factors MDC1 and replication protein A (RPA) at DNA damage sites and that RNF4-depleted cells fail to effectively replace RPA by the homologous recombination factors BRCA2 and RAD51 on resected DNA. Consistent with previous data showing that RNF4 targets proteins to the proteasome, we show that the proteasome component PSMD4 is recruited to DNA damage sites in a manner requiring its ubiquitin-interacting domains, RNF4 and RNF8. Finally, we establish that PSMD4 binds MDC1 and RPA1 in a DNA damage-induced, RNF4-dependent manner and that PSMD4 depletion cause MDC1 and γH2AX persistence in irradiated cells. RNF4 thus operates as a DSB response factor at the crossroads between the SUMO and ubiquitin systems.</description><identifier>ISSN: 0890-9369</identifier><identifier>EISSN: 1549-5477</identifier><identifier>DOI: 10.1101/gad.188284.112</identifier><identifier>PMID: 22661229</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Adaptor Proteins, Signal Transducing ; Cell Cycle Proteins ; Cell Line, Tumor ; DNA Breaks, Double-Stranded ; DNA Repair ; DNA, Single-Stranded - metabolism ; Histones - metabolism ; Humans ; Nuclear Proteins - metabolism ; Proteasome Endopeptidase Complex - metabolism ; Rad51 Recombinase - metabolism ; Replication Protein A - metabolism ; Research Paper ; Trans-Activators - metabolism ; Transcription Factors - metabolism ; Ubiquitin-Protein Ligases - metabolism</subject><ispartof>Genes &amp; development, 2012-06, Vol.26 (11), p.1179-1195</ispartof><rights>Copyright © 2012 by Cold Spring Harbor Laboratory Press 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-83ee0c794a400ca0b7ce89e64627696719f92392214030b5207f5e1ff19d003f3</citedby><cites>FETCH-LOGICAL-c456t-83ee0c794a400ca0b7ce89e64627696719f92392214030b5207f5e1ff19d003f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3371407/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3371407/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22661229$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Galanty, Yaron</creatorcontrib><creatorcontrib>Belotserkovskaya, Rimma</creatorcontrib><creatorcontrib>Coates, Julia</creatorcontrib><creatorcontrib>Jackson, Stephen P</creatorcontrib><title>RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair</title><title>Genes &amp; development</title><addtitle>Genes Dev</addtitle><description>Protein ubiquitylation and sumoylation play key roles in regulating cellular responses to DNA double-strand breaks (DSBs). Here, we show that human RNF4, a small ubiquitin-like modifier (SUMO)-targeted ubiquitin E3 ligase, is recruited to DSBs in a manner requiring its SUMO interaction motifs, the SUMO E3 ligases PIAS1 and PIAS4, and various DSB-responsive proteins. Furthermore, we reveal that RNF4 depletion impairs ubiquitin adduct formation at DSB sites and causes persistent histone H2AX phosphorylation (γH2AX) associated with defective DSB repair, hypersensitivity toward DSB-inducing agents, and delayed recovery from radiation-induced cell cycle arrest. We establish that RNF4 regulates turnover of the DSB-responsive factors MDC1 and replication protein A (RPA) at DNA damage sites and that RNF4-depleted cells fail to effectively replace RPA by the homologous recombination factors BRCA2 and RAD51 on resected DNA. Consistent with previous data showing that RNF4 targets proteins to the proteasome, we show that the proteasome component PSMD4 is recruited to DNA damage sites in a manner requiring its ubiquitin-interacting domains, RNF4 and RNF8. Finally, we establish that PSMD4 binds MDC1 and RPA1 in a DNA damage-induced, RNF4-dependent manner and that PSMD4 depletion cause MDC1 and γH2AX persistence in irradiated cells. RNF4 thus operates as a DSB response factor at the crossroads between the SUMO and ubiquitin systems.</description><subject>Adaptor Proteins, Signal Transducing</subject><subject>Cell Cycle Proteins</subject><subject>Cell Line, Tumor</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA Repair</subject><subject>DNA, Single-Stranded - metabolism</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Nuclear Proteins - metabolism</subject><subject>Proteasome Endopeptidase Complex - metabolism</subject><subject>Rad51 Recombinase - metabolism</subject><subject>Replication Protein A - metabolism</subject><subject>Research Paper</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors - metabolism</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><issn>0890-9369</issn><issn>1549-5477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUbtOxDAQtBAIjkdLiVxSkGP9iB03SIi3xEPiUVtOsjkMueSwEyT-HqMDBNVqtLOzoxlCdhlMGQN2OHP1lBUFL2TCfIVMWC5NlkutV8kECgOZEcpskM0YXwBAgVLrZINzpRjnZkLu72_P5QF19OHp5i4bXJjhgDUdS_82-sF39EzQ1s9cxAO6CP28HzDS09tjWvdj2WIWh-C6mpYB3SsNuHA-bJO1xrURd77nFnk6P3s8ucyu7y6uTo6vs0rmasgKgQiVNtJJgMpBqSssDCqpuFZGaWYaw4XhnEkQUOYcdJMjaxpmagDRiC1ytNRdjOUc6wq75KW1i-DnLnzY3nn7f9P5Zzvr360QOmnqJLD_LRD6txHjYOc-Vti2rsN-jDblWyihpIBEnS6pVehjDNj8vmFgv4qwqQi7LCJhng72_pr7pf8kLz4BdYKCVw</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Galanty, Yaron</creator><creator>Belotserkovskaya, Rimma</creator><creator>Coates, Julia</creator><creator>Jackson, Stephen P</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120601</creationdate><title>RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair</title><author>Galanty, Yaron ; Belotserkovskaya, Rimma ; Coates, Julia ; Jackson, Stephen P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-83ee0c794a400ca0b7ce89e64627696719f92392214030b5207f5e1ff19d003f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptor Proteins, Signal Transducing</topic><topic>Cell Cycle Proteins</topic><topic>Cell Line, Tumor</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA Repair</topic><topic>DNA, Single-Stranded - metabolism</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Nuclear Proteins - metabolism</topic><topic>Proteasome Endopeptidase Complex - metabolism</topic><topic>Rad51 Recombinase - metabolism</topic><topic>Replication Protein A - metabolism</topic><topic>Research Paper</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors - metabolism</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galanty, Yaron</creatorcontrib><creatorcontrib>Belotserkovskaya, Rimma</creatorcontrib><creatorcontrib>Coates, Julia</creatorcontrib><creatorcontrib>Jackson, Stephen P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes &amp; development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galanty, Yaron</au><au>Belotserkovskaya, Rimma</au><au>Coates, Julia</au><au>Jackson, Stephen P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair</atitle><jtitle>Genes &amp; development</jtitle><addtitle>Genes Dev</addtitle><date>2012-06-01</date><risdate>2012</risdate><volume>26</volume><issue>11</issue><spage>1179</spage><epage>1195</epage><pages>1179-1195</pages><issn>0890-9369</issn><eissn>1549-5477</eissn><abstract>Protein ubiquitylation and sumoylation play key roles in regulating cellular responses to DNA double-strand breaks (DSBs). Here, we show that human RNF4, a small ubiquitin-like modifier (SUMO)-targeted ubiquitin E3 ligase, is recruited to DSBs in a manner requiring its SUMO interaction motifs, the SUMO E3 ligases PIAS1 and PIAS4, and various DSB-responsive proteins. Furthermore, we reveal that RNF4 depletion impairs ubiquitin adduct formation at DSB sites and causes persistent histone H2AX phosphorylation (γH2AX) associated with defective DSB repair, hypersensitivity toward DSB-inducing agents, and delayed recovery from radiation-induced cell cycle arrest. We establish that RNF4 regulates turnover of the DSB-responsive factors MDC1 and replication protein A (RPA) at DNA damage sites and that RNF4-depleted cells fail to effectively replace RPA by the homologous recombination factors BRCA2 and RAD51 on resected DNA. Consistent with previous data showing that RNF4 targets proteins to the proteasome, we show that the proteasome component PSMD4 is recruited to DNA damage sites in a manner requiring its ubiquitin-interacting domains, RNF4 and RNF8. Finally, we establish that PSMD4 binds MDC1 and RPA1 in a DNA damage-induced, RNF4-dependent manner and that PSMD4 depletion cause MDC1 and γH2AX persistence in irradiated cells. RNF4 thus operates as a DSB response factor at the crossroads between the SUMO and ubiquitin systems.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>22661229</pmid><doi>10.1101/gad.188284.112</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0890-9369
ispartof Genes & development, 2012-06, Vol.26 (11), p.1179-1195
issn 0890-9369
1549-5477
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3371407
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Adaptor Proteins, Signal Transducing
Cell Cycle Proteins
Cell Line, Tumor
DNA Breaks, Double-Stranded
DNA Repair
DNA, Single-Stranded - metabolism
Histones - metabolism
Humans
Nuclear Proteins - metabolism
Proteasome Endopeptidase Complex - metabolism
Rad51 Recombinase - metabolism
Replication Protein A - metabolism
Research Paper
Trans-Activators - metabolism
Transcription Factors - metabolism
Ubiquitin-Protein Ligases - metabolism
title RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RNF4,%20a%20SUMO-targeted%20ubiquitin%20E3%20ligase,%20promotes%20DNA%20double-strand%20break%20repair&rft.jtitle=Genes%20&%20development&rft.au=Galanty,%20Yaron&rft.date=2012-06-01&rft.volume=26&rft.issue=11&rft.spage=1179&rft.epage=1195&rft.pages=1179-1195&rft.issn=0890-9369&rft.eissn=1549-5477&rft_id=info:doi/10.1101/gad.188284.112&rft_dat=%3Cproquest_pubme%3E1018636430%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1018636430&rft_id=info:pmid/22661229&rfr_iscdi=true