Inhibitory control of synaptic and behavioral plasticity by octopaminergic signaling

Adrenergic receptors and their ligands are important regulators of synaptic plasticity and metaplasticity, but the exact mechanisms underlying their action are still poorly understood. Octopamine, the invertebrate homolog of mammalian adrenaline or noradrenaline, plays important roles in modulating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2012-05, Vol.32 (18), p.6312-6322
Hauptverfasser: Koon, Alex C, Budnik, Vivian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6322
container_issue 18
container_start_page 6312
container_title The Journal of neuroscience
container_volume 32
creator Koon, Alex C
Budnik, Vivian
description Adrenergic receptors and their ligands are important regulators of synaptic plasticity and metaplasticity, but the exact mechanisms underlying their action are still poorly understood. Octopamine, the invertebrate homolog of mammalian adrenaline or noradrenaline, plays important roles in modulating behavior and synaptic functions. We previously uncovered an octopaminergic positive-feedback mechanism to regulate structural synaptic plasticity during development and in response to starvation. Under this mechanism, activation of Octß2R autoreceptors by octopamine at octopaminergic neurons initiated a cAMP-dependent cascade that stimulated the development of new synaptic boutons at the Drosophila larval neuromuscular junction (NMJ). However, the regulatory mechanisms that served to brake such positive feedback were not known. Here, we report the presence of an alternative octopamine autoreceptor, Octß1R, with antagonistic functions on synaptic growth. Mutations in octß1r result in the overgrowth of both glutamatergic and octopaminergic NMJs, suggesting that Octß1R is a negative regulator of synaptic expansion. As Octß2R, Octß1R functioned in a cell-autonomous manner at presynaptic motorneurons. However, unlike Octß2R, which activated a cAMP pathway, Octß1R likely inhibited cAMP production through inhibitory Goα. Despite its inhibitory role, Octß1R was required for acute changes in synaptic structure in response to octopamine and for starvation-induced increase in locomotor speed. These results demonstrate the dual action of octopamine on synaptic growth and behavioral plasticity, and highlight the important role of inhibitory influences for normal responses to physiological stimuli.
doi_str_mv 10.1523/jneurosci.6517-11.2012
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3371232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1011182983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-a4927733ad7736e4fee005572c396431313cc6cafb82f4e2452524b7943cd2d23</originalsourceid><addsrcrecordid>eNqFkUFLJDEQhYO4rKO7f0H66KXHVCXpTF8EGVwdkRV29RzS6fRMpCdpkx6h__1m0BU9SSCBqlePV_kIOQU6B4Hs_MnbXQzJuHklQJYAc6SAB2SWu3WJnMIhmVGUtKy45EfkOKUnSqmkIL-TI0QhGGVyRh5WfuMaN4Y4FSb4MYa-CF2RJq-H0ZlC-7Zo7Ea_uBB1Xwy9TrnsxqlopiKYMQx667yN66xNbu117_z6B_nW6T7Zn2_vCXn8dfWwvCnv7q9Xy8u70ghgY6l5jVIyptt8V5Z31lIqhETD6oozyMeYyuiuWWDHLXKBAnkja85Miy2yE3Lx6jvsmq1tjc35da-G6LY6Tipopz53vNuodXhRjElAtjc4ezOI4Xln06i2Lhnb99rbsEsKhIAqfybWX0spACywXrAsrV6lJhNK0XbviYCqPT11-_vq8c_93-VK7ekpALWnlwdPP-7zPvYfF_sHlqyZPA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1011182983</pqid></control><display><type>article</type><title>Inhibitory control of synaptic and behavioral plasticity by octopaminergic signaling</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Koon, Alex C ; Budnik, Vivian</creator><creatorcontrib>Koon, Alex C ; Budnik, Vivian</creatorcontrib><description>Adrenergic receptors and their ligands are important regulators of synaptic plasticity and metaplasticity, but the exact mechanisms underlying their action are still poorly understood. Octopamine, the invertebrate homolog of mammalian adrenaline or noradrenaline, plays important roles in modulating behavior and synaptic functions. We previously uncovered an octopaminergic positive-feedback mechanism to regulate structural synaptic plasticity during development and in response to starvation. Under this mechanism, activation of Octß2R autoreceptors by octopamine at octopaminergic neurons initiated a cAMP-dependent cascade that stimulated the development of new synaptic boutons at the Drosophila larval neuromuscular junction (NMJ). However, the regulatory mechanisms that served to brake such positive feedback were not known. Here, we report the presence of an alternative octopamine autoreceptor, Octß1R, with antagonistic functions on synaptic growth. Mutations in octß1r result in the overgrowth of both glutamatergic and octopaminergic NMJs, suggesting that Octß1R is a negative regulator of synaptic expansion. As Octß2R, Octß1R functioned in a cell-autonomous manner at presynaptic motorneurons. However, unlike Octß2R, which activated a cAMP pathway, Octß1R likely inhibited cAMP production through inhibitory Goα. Despite its inhibitory role, Octß1R was required for acute changes in synaptic structure in response to octopamine and for starvation-induced increase in locomotor speed. These results demonstrate the dual action of octopamine on synaptic growth and behavioral plasticity, and highlight the important role of inhibitory influences for normal responses to physiological stimuli.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.6517-11.2012</identifier><identifier>PMID: 22553037</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Animals ; Drosophila ; Drosophila - physiology ; Neural Inhibition - physiology ; Neuronal Plasticity - physiology ; Neurons - physiology ; Octopamine - metabolism ; Receptors, Biogenic Amine - metabolism ; Synapses - physiology ; Synaptic Transmission - physiology</subject><ispartof>The Journal of neuroscience, 2012-05, Vol.32 (18), p.6312-6322</ispartof><rights>Copyright © 2012 the authors 0270-6474/12/326312-11$15.00/0 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-a4927733ad7736e4fee005572c396431313cc6cafb82f4e2452524b7943cd2d23</citedby><cites>FETCH-LOGICAL-c513t-a4927733ad7736e4fee005572c396431313cc6cafb82f4e2452524b7943cd2d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3371232/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3371232/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22553037$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koon, Alex C</creatorcontrib><creatorcontrib>Budnik, Vivian</creatorcontrib><title>Inhibitory control of synaptic and behavioral plasticity by octopaminergic signaling</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Adrenergic receptors and their ligands are important regulators of synaptic plasticity and metaplasticity, but the exact mechanisms underlying their action are still poorly understood. Octopamine, the invertebrate homolog of mammalian adrenaline or noradrenaline, plays important roles in modulating behavior and synaptic functions. We previously uncovered an octopaminergic positive-feedback mechanism to regulate structural synaptic plasticity during development and in response to starvation. Under this mechanism, activation of Octß2R autoreceptors by octopamine at octopaminergic neurons initiated a cAMP-dependent cascade that stimulated the development of new synaptic boutons at the Drosophila larval neuromuscular junction (NMJ). However, the regulatory mechanisms that served to brake such positive feedback were not known. Here, we report the presence of an alternative octopamine autoreceptor, Octß1R, with antagonistic functions on synaptic growth. Mutations in octß1r result in the overgrowth of both glutamatergic and octopaminergic NMJs, suggesting that Octß1R is a negative regulator of synaptic expansion. As Octß2R, Octß1R functioned in a cell-autonomous manner at presynaptic motorneurons. However, unlike Octß2R, which activated a cAMP pathway, Octß1R likely inhibited cAMP production through inhibitory Goα. Despite its inhibitory role, Octß1R was required for acute changes in synaptic structure in response to octopamine and for starvation-induced increase in locomotor speed. These results demonstrate the dual action of octopamine on synaptic growth and behavioral plasticity, and highlight the important role of inhibitory influences for normal responses to physiological stimuli.</description><subject>Animals</subject><subject>Drosophila</subject><subject>Drosophila - physiology</subject><subject>Neural Inhibition - physiology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons - physiology</subject><subject>Octopamine - metabolism</subject><subject>Receptors, Biogenic Amine - metabolism</subject><subject>Synapses - physiology</subject><subject>Synaptic Transmission - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFLJDEQhYO4rKO7f0H66KXHVCXpTF8EGVwdkRV29RzS6fRMpCdpkx6h__1m0BU9SSCBqlePV_kIOQU6B4Hs_MnbXQzJuHklQJYAc6SAB2SWu3WJnMIhmVGUtKy45EfkOKUnSqmkIL-TI0QhGGVyRh5WfuMaN4Y4FSb4MYa-CF2RJq-H0ZlC-7Zo7Ea_uBB1Xwy9TrnsxqlopiKYMQx667yN66xNbu117_z6B_nW6T7Zn2_vCXn8dfWwvCnv7q9Xy8u70ghgY6l5jVIyptt8V5Z31lIqhETD6oozyMeYyuiuWWDHLXKBAnkja85Miy2yE3Lx6jvsmq1tjc35da-G6LY6Tipopz53vNuodXhRjElAtjc4ezOI4Xln06i2Lhnb99rbsEsKhIAqfybWX0spACywXrAsrV6lJhNK0XbviYCqPT11-_vq8c_93-VK7ekpALWnlwdPP-7zPvYfF_sHlqyZPA</recordid><startdate>20120502</startdate><enddate>20120502</enddate><creator>Koon, Alex C</creator><creator>Budnik, Vivian</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QG</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20120502</creationdate><title>Inhibitory control of synaptic and behavioral plasticity by octopaminergic signaling</title><author>Koon, Alex C ; Budnik, Vivian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-a4927733ad7736e4fee005572c396431313cc6cafb82f4e2452524b7943cd2d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Drosophila</topic><topic>Drosophila - physiology</topic><topic>Neural Inhibition - physiology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons - physiology</topic><topic>Octopamine - metabolism</topic><topic>Receptors, Biogenic Amine - metabolism</topic><topic>Synapses - physiology</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koon, Alex C</creatorcontrib><creatorcontrib>Budnik, Vivian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Animal Behavior Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koon, Alex C</au><au>Budnik, Vivian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibitory control of synaptic and behavioral plasticity by octopaminergic signaling</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2012-05-02</date><risdate>2012</risdate><volume>32</volume><issue>18</issue><spage>6312</spage><epage>6322</epage><pages>6312-6322</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>Adrenergic receptors and their ligands are important regulators of synaptic plasticity and metaplasticity, but the exact mechanisms underlying their action are still poorly understood. Octopamine, the invertebrate homolog of mammalian adrenaline or noradrenaline, plays important roles in modulating behavior and synaptic functions. We previously uncovered an octopaminergic positive-feedback mechanism to regulate structural synaptic plasticity during development and in response to starvation. Under this mechanism, activation of Octß2R autoreceptors by octopamine at octopaminergic neurons initiated a cAMP-dependent cascade that stimulated the development of new synaptic boutons at the Drosophila larval neuromuscular junction (NMJ). However, the regulatory mechanisms that served to brake such positive feedback were not known. Here, we report the presence of an alternative octopamine autoreceptor, Octß1R, with antagonistic functions on synaptic growth. Mutations in octß1r result in the overgrowth of both glutamatergic and octopaminergic NMJs, suggesting that Octß1R is a negative regulator of synaptic expansion. As Octß2R, Octß1R functioned in a cell-autonomous manner at presynaptic motorneurons. However, unlike Octß2R, which activated a cAMP pathway, Octß1R likely inhibited cAMP production through inhibitory Goα. Despite its inhibitory role, Octß1R was required for acute changes in synaptic structure in response to octopamine and for starvation-induced increase in locomotor speed. These results demonstrate the dual action of octopamine on synaptic growth and behavioral plasticity, and highlight the important role of inhibitory influences for normal responses to physiological stimuli.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>22553037</pmid><doi>10.1523/jneurosci.6517-11.2012</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2012-05, Vol.32 (18), p.6312-6322
issn 0270-6474
1529-2401
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3371232
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
Drosophila
Drosophila - physiology
Neural Inhibition - physiology
Neuronal Plasticity - physiology
Neurons - physiology
Octopamine - metabolism
Receptors, Biogenic Amine - metabolism
Synapses - physiology
Synaptic Transmission - physiology
title Inhibitory control of synaptic and behavioral plasticity by octopaminergic signaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T00%3A30%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibitory%20control%20of%20synaptic%20and%20behavioral%20plasticity%20by%20octopaminergic%20signaling&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Koon,%20Alex%20C&rft.date=2012-05-02&rft.volume=32&rft.issue=18&rft.spage=6312&rft.epage=6322&rft.pages=6312-6322&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.6517-11.2012&rft_dat=%3Cproquest_pubme%3E1011182983%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1011182983&rft_id=info:pmid/22553037&rfr_iscdi=true