Characterization of Dark Quencher Chromophores as Nonfluorescent Acceptors for Single-Molecule FRET

Dark quenchers are chromophores that primarily relax from the excited state to the ground state nonradiatively (i.e., are dark). As a result, they can serve as acceptors for Förster resonance energy transfer experiments without contributing significantly to background in the donor-emission channel,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2012-06, Vol.102 (11), p.2658-2668
Hauptverfasser: Le Reste, Ludovic, Hohlbein, Johannes, Gryte, Kristofer, Kapanidis, Achillefs N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2668
container_issue 11
container_start_page 2658
container_title Biophysical journal
container_volume 102
creator Le Reste, Ludovic
Hohlbein, Johannes
Gryte, Kristofer
Kapanidis, Achillefs N.
description Dark quenchers are chromophores that primarily relax from the excited state to the ground state nonradiatively (i.e., are dark). As a result, they can serve as acceptors for Förster resonance energy transfer experiments without contributing significantly to background in the donor-emission channel, even at high concentrations. Although the advantages of dark quenchers have been exploited for ensemble bioassays, no systematic single-molecule study of dark quenchers has been performed, and little is known about their photophysical properties. Here, we present the first systematic single-molecule study of dark quenchers in conjunction with fluorophores and demonstrate the use of dark quenchers for monitoring multiple interactions and distances in multichromophore systems. Specifically, using double-stranded DNA standards labeled with two fluorophores and a dark quencher (either QSY7 or QSY21), we show that the proximity of a fluorophore and dark quencher can be monitored using the stoichiometry ratio available from alternating laser excitation spectroscopy experiments, either for single molecules diffusing in solution (using a confocal fluorescence) or immobilized on surfaces (using total-internal-reflection fluorescence). The latter experiments allowed characterization of the dark-quencher photophysical properties at the single-molecule level. We also use dark-quenchers to study the affinity and kinetics of binding of DNA Polymerase I (Klenow fragment) to DNA. The measured properties are in excellent agreement with the results of ensemble assays, validating the use of dark quenchers. Because dark-quencher-labeled biomolecules can be used in total-internal-reflection fluorescence experiments at concentrations of 1 μM or more without introducing a significant background, the use of dark quenchers should permit single-molecule Förster resonance energy transfer measurements for the large number of biomolecules that participate in interactions of moderate-to-low affinity.
doi_str_mv 10.1016/j.bpj.2012.04.028
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3368131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349512005024</els_id><sourcerecordid>2686617161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c569t-c893e7f26a738b217ea021d00a581831fe97f4a47942c1275fa006d680ae4dee3</originalsourceid><addsrcrecordid>eNp9kc1u1DAURi0EokPhAdiAJTZsEvybOEJCqoYWkAoI2q4tj3M98ZCJg51Uap8eR1MqYMHKsnzup_v5IPSckpISWr3ZlZtxVzJCWUlESZh6gFZUClYQoqqHaEUIqQouGnmEnqS0IxmUhD5GR4zVlEvFVsiuOxONnSD6WzP5MODg8HsTf-BvMwy2g4jXXQz7MHYhQsIm4S9hcP283CwMEz6xFsYpxIRdiPjCD9seis-hBzv3gM--n14-RY-c6RM8uzuP0dXZ6eX6Y3H-9cOn9cl5YWXVTIVVDYfascrUXG0YrcEQRltCjFRUceqgqZ0wom4Es5TV0pncr60UMSBaAH6M3h1yx3mzh3bZLppej9HvTbzRwXj998vgO70N15rzSlFOc8Dru4AYfs6QJr33uWTfmwHCnDTN-whJm6bK6Kt_0F2Y45DrLRThrBKVyhQ9UDaGlCK4-2Uo0YtCvdNZoV4UaiJ0VphnXvzZ4n7it7MMvDwAzgRtttEnfXWRE2T2uwiWmXh7ICD_9rWHqJP12Sa0PoKddBv8fxb4Bdq6tck</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1020326468</pqid></control><display><type>article</type><title>Characterization of Dark Quencher Chromophores as Nonfluorescent Acceptors for Single-Molecule FRET</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Le Reste, Ludovic ; Hohlbein, Johannes ; Gryte, Kristofer ; Kapanidis, Achillefs N.</creator><creatorcontrib>Le Reste, Ludovic ; Hohlbein, Johannes ; Gryte, Kristofer ; Kapanidis, Achillefs N.</creatorcontrib><description>Dark quenchers are chromophores that primarily relax from the excited state to the ground state nonradiatively (i.e., are dark). As a result, they can serve as acceptors for Förster resonance energy transfer experiments without contributing significantly to background in the donor-emission channel, even at high concentrations. Although the advantages of dark quenchers have been exploited for ensemble bioassays, no systematic single-molecule study of dark quenchers has been performed, and little is known about their photophysical properties. Here, we present the first systematic single-molecule study of dark quenchers in conjunction with fluorophores and demonstrate the use of dark quenchers for monitoring multiple interactions and distances in multichromophore systems. Specifically, using double-stranded DNA standards labeled with two fluorophores and a dark quencher (either QSY7 or QSY21), we show that the proximity of a fluorophore and dark quencher can be monitored using the stoichiometry ratio available from alternating laser excitation spectroscopy experiments, either for single molecules diffusing in solution (using a confocal fluorescence) or immobilized on surfaces (using total-internal-reflection fluorescence). The latter experiments allowed characterization of the dark-quencher photophysical properties at the single-molecule level. We also use dark-quenchers to study the affinity and kinetics of binding of DNA Polymerase I (Klenow fragment) to DNA. The measured properties are in excellent agreement with the results of ensemble assays, validating the use of dark quenchers. Because dark-quencher-labeled biomolecules can be used in total-internal-reflection fluorescence experiments at concentrations of 1 μM or more without introducing a significant background, the use of dark quenchers should permit single-molecule Förster resonance energy transfer measurements for the large number of biomolecules that participate in interactions of moderate-to-low affinity.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2012.04.028</identifier><identifier>PMID: 22713582</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Base Sequence ; Bioassays ; Darkness ; DNA ; DNA - genetics ; DNA - metabolism ; DNA polymerase ; DNA-directed DNA polymerase ; DNA-Directed DNA Polymerase - metabolism ; energy transfer ; fluorescence ; Fluorescence Resonance Energy Transfer - methods ; Fluorescent Dyes - metabolism ; Kinetics ; Measurement ; Models, Molecular ; Molecular Sequence Data ; Molecules ; monitoring ; Protein Binding ; Reference Standards ; spectroscopy ; Spectroscopy, Imaging, and Other Techniques ; stoichiometry ; Time Factors</subject><ispartof>Biophysical journal, 2012-06, Vol.102 (11), p.2658-2668</ispartof><rights>2012 Biophysical Society</rights><rights>Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Jun 6, 2012</rights><rights>2012 by the Biophysical Society. 2012 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c569t-c893e7f26a738b217ea021d00a581831fe97f4a47942c1275fa006d680ae4dee3</citedby><cites>FETCH-LOGICAL-c569t-c893e7f26a738b217ea021d00a581831fe97f4a47942c1275fa006d680ae4dee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3368131/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2012.04.028$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22713582$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Le Reste, Ludovic</creatorcontrib><creatorcontrib>Hohlbein, Johannes</creatorcontrib><creatorcontrib>Gryte, Kristofer</creatorcontrib><creatorcontrib>Kapanidis, Achillefs N.</creatorcontrib><title>Characterization of Dark Quencher Chromophores as Nonfluorescent Acceptors for Single-Molecule FRET</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Dark quenchers are chromophores that primarily relax from the excited state to the ground state nonradiatively (i.e., are dark). As a result, they can serve as acceptors for Förster resonance energy transfer experiments without contributing significantly to background in the donor-emission channel, even at high concentrations. Although the advantages of dark quenchers have been exploited for ensemble bioassays, no systematic single-molecule study of dark quenchers has been performed, and little is known about their photophysical properties. Here, we present the first systematic single-molecule study of dark quenchers in conjunction with fluorophores and demonstrate the use of dark quenchers for monitoring multiple interactions and distances in multichromophore systems. Specifically, using double-stranded DNA standards labeled with two fluorophores and a dark quencher (either QSY7 or QSY21), we show that the proximity of a fluorophore and dark quencher can be monitored using the stoichiometry ratio available from alternating laser excitation spectroscopy experiments, either for single molecules diffusing in solution (using a confocal fluorescence) or immobilized on surfaces (using total-internal-reflection fluorescence). The latter experiments allowed characterization of the dark-quencher photophysical properties at the single-molecule level. We also use dark-quenchers to study the affinity and kinetics of binding of DNA Polymerase I (Klenow fragment) to DNA. The measured properties are in excellent agreement with the results of ensemble assays, validating the use of dark quenchers. Because dark-quencher-labeled biomolecules can be used in total-internal-reflection fluorescence experiments at concentrations of 1 μM or more without introducing a significant background, the use of dark quenchers should permit single-molecule Förster resonance energy transfer measurements for the large number of biomolecules that participate in interactions of moderate-to-low affinity.</description><subject>Base Sequence</subject><subject>Bioassays</subject><subject>Darkness</subject><subject>DNA</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>DNA polymerase</subject><subject>DNA-directed DNA polymerase</subject><subject>DNA-Directed DNA Polymerase - metabolism</subject><subject>energy transfer</subject><subject>fluorescence</subject><subject>Fluorescence Resonance Energy Transfer - methods</subject><subject>Fluorescent Dyes - metabolism</subject><subject>Kinetics</subject><subject>Measurement</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Molecules</subject><subject>monitoring</subject><subject>Protein Binding</subject><subject>Reference Standards</subject><subject>spectroscopy</subject><subject>Spectroscopy, Imaging, and Other Techniques</subject><subject>stoichiometry</subject><subject>Time Factors</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAURi0EokPhAdiAJTZsEvybOEJCqoYWkAoI2q4tj3M98ZCJg51Uap8eR1MqYMHKsnzup_v5IPSckpISWr3ZlZtxVzJCWUlESZh6gFZUClYQoqqHaEUIqQouGnmEnqS0IxmUhD5GR4zVlEvFVsiuOxONnSD6WzP5MODg8HsTf-BvMwy2g4jXXQz7MHYhQsIm4S9hcP283CwMEz6xFsYpxIRdiPjCD9seis-hBzv3gM--n14-RY-c6RM8uzuP0dXZ6eX6Y3H-9cOn9cl5YWXVTIVVDYfascrUXG0YrcEQRltCjFRUceqgqZ0wom4Es5TV0pncr60UMSBaAH6M3h1yx3mzh3bZLppej9HvTbzRwXj998vgO70N15rzSlFOc8Dru4AYfs6QJr33uWTfmwHCnDTN-whJm6bK6Kt_0F2Y45DrLRThrBKVyhQ9UDaGlCK4-2Uo0YtCvdNZoV4UaiJ0VphnXvzZ4n7it7MMvDwAzgRtttEnfXWRE2T2uwiWmXh7ICD_9rWHqJP12Sa0PoKddBv8fxb4Bdq6tck</recordid><startdate>20120606</startdate><enddate>20120606</enddate><creator>Le Reste, Ludovic</creator><creator>Hohlbein, Johannes</creator><creator>Gryte, Kristofer</creator><creator>Kapanidis, Achillefs N.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120606</creationdate><title>Characterization of Dark Quencher Chromophores as Nonfluorescent Acceptors for Single-Molecule FRET</title><author>Le Reste, Ludovic ; Hohlbein, Johannes ; Gryte, Kristofer ; Kapanidis, Achillefs N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c569t-c893e7f26a738b217ea021d00a581831fe97f4a47942c1275fa006d680ae4dee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Base Sequence</topic><topic>Bioassays</topic><topic>Darkness</topic><topic>DNA</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>DNA polymerase</topic><topic>DNA-directed DNA polymerase</topic><topic>DNA-Directed DNA Polymerase - metabolism</topic><topic>energy transfer</topic><topic>fluorescence</topic><topic>Fluorescence Resonance Energy Transfer - methods</topic><topic>Fluorescent Dyes - metabolism</topic><topic>Kinetics</topic><topic>Measurement</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Molecules</topic><topic>monitoring</topic><topic>Protein Binding</topic><topic>Reference Standards</topic><topic>spectroscopy</topic><topic>Spectroscopy, Imaging, and Other Techniques</topic><topic>stoichiometry</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le Reste, Ludovic</creatorcontrib><creatorcontrib>Hohlbein, Johannes</creatorcontrib><creatorcontrib>Gryte, Kristofer</creatorcontrib><creatorcontrib>Kapanidis, Achillefs N.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le Reste, Ludovic</au><au>Hohlbein, Johannes</au><au>Gryte, Kristofer</au><au>Kapanidis, Achillefs N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Dark Quencher Chromophores as Nonfluorescent Acceptors for Single-Molecule FRET</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2012-06-06</date><risdate>2012</risdate><volume>102</volume><issue>11</issue><spage>2658</spage><epage>2668</epage><pages>2658-2668</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Dark quenchers are chromophores that primarily relax from the excited state to the ground state nonradiatively (i.e., are dark). As a result, they can serve as acceptors for Förster resonance energy transfer experiments without contributing significantly to background in the donor-emission channel, even at high concentrations. Although the advantages of dark quenchers have been exploited for ensemble bioassays, no systematic single-molecule study of dark quenchers has been performed, and little is known about their photophysical properties. Here, we present the first systematic single-molecule study of dark quenchers in conjunction with fluorophores and demonstrate the use of dark quenchers for monitoring multiple interactions and distances in multichromophore systems. Specifically, using double-stranded DNA standards labeled with two fluorophores and a dark quencher (either QSY7 or QSY21), we show that the proximity of a fluorophore and dark quencher can be monitored using the stoichiometry ratio available from alternating laser excitation spectroscopy experiments, either for single molecules diffusing in solution (using a confocal fluorescence) or immobilized on surfaces (using total-internal-reflection fluorescence). The latter experiments allowed characterization of the dark-quencher photophysical properties at the single-molecule level. We also use dark-quenchers to study the affinity and kinetics of binding of DNA Polymerase I (Klenow fragment) to DNA. The measured properties are in excellent agreement with the results of ensemble assays, validating the use of dark quenchers. Because dark-quencher-labeled biomolecules can be used in total-internal-reflection fluorescence experiments at concentrations of 1 μM or more without introducing a significant background, the use of dark quenchers should permit single-molecule Förster resonance energy transfer measurements for the large number of biomolecules that participate in interactions of moderate-to-low affinity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22713582</pmid><doi>10.1016/j.bpj.2012.04.028</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2012-06, Vol.102 (11), p.2658-2668
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3368131
source MEDLINE; Cell Press Free Archives; ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Base Sequence
Bioassays
Darkness
DNA
DNA - genetics
DNA - metabolism
DNA polymerase
DNA-directed DNA polymerase
DNA-Directed DNA Polymerase - metabolism
energy transfer
fluorescence
Fluorescence Resonance Energy Transfer - methods
Fluorescent Dyes - metabolism
Kinetics
Measurement
Models, Molecular
Molecular Sequence Data
Molecules
monitoring
Protein Binding
Reference Standards
spectroscopy
Spectroscopy, Imaging, and Other Techniques
stoichiometry
Time Factors
title Characterization of Dark Quencher Chromophores as Nonfluorescent Acceptors for Single-Molecule FRET
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A48%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Dark%20Quencher%20Chromophores%20as%20Nonfluorescent%20Acceptors%20for%20Single-Molecule%20FRET&rft.jtitle=Biophysical%20journal&rft.au=Le%20Reste,%20Ludovic&rft.date=2012-06-06&rft.volume=102&rft.issue=11&rft.spage=2658&rft.epage=2668&rft.pages=2658-2668&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2012.04.028&rft_dat=%3Cproquest_pubme%3E2686617161%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1020326468&rft_id=info:pmid/22713582&rft_els_id=S0006349512005024&rfr_iscdi=true