Characterization of Dark Quencher Chromophores as Nonfluorescent Acceptors for Single-Molecule FRET
Dark quenchers are chromophores that primarily relax from the excited state to the ground state nonradiatively (i.e., are dark). As a result, they can serve as acceptors for Förster resonance energy transfer experiments without contributing significantly to background in the donor-emission channel,...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2012-06, Vol.102 (11), p.2658-2668 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2668 |
---|---|
container_issue | 11 |
container_start_page | 2658 |
container_title | Biophysical journal |
container_volume | 102 |
creator | Le Reste, Ludovic Hohlbein, Johannes Gryte, Kristofer Kapanidis, Achillefs N. |
description | Dark quenchers are chromophores that primarily relax from the excited state to the ground state nonradiatively (i.e., are dark). As a result, they can serve as acceptors for Förster resonance energy transfer experiments without contributing significantly to background in the donor-emission channel, even at high concentrations. Although the advantages of dark quenchers have been exploited for ensemble bioassays, no systematic single-molecule study of dark quenchers has been performed, and little is known about their photophysical properties. Here, we present the first systematic single-molecule study of dark quenchers in conjunction with fluorophores and demonstrate the use of dark quenchers for monitoring multiple interactions and distances in multichromophore systems. Specifically, using double-stranded DNA standards labeled with two fluorophores and a dark quencher (either QSY7 or QSY21), we show that the proximity of a fluorophore and dark quencher can be monitored using the stoichiometry ratio available from alternating laser excitation spectroscopy experiments, either for single molecules diffusing in solution (using a confocal fluorescence) or immobilized on surfaces (using total-internal-reflection fluorescence). The latter experiments allowed characterization of the dark-quencher photophysical properties at the single-molecule level. We also use dark-quenchers to study the affinity and kinetics of binding of DNA Polymerase I (Klenow fragment) to DNA. The measured properties are in excellent agreement with the results of ensemble assays, validating the use of dark quenchers. Because dark-quencher-labeled biomolecules can be used in total-internal-reflection fluorescence experiments at concentrations of 1 μM or more without introducing a significant background, the use of dark quenchers should permit single-molecule Förster resonance energy transfer measurements for the large number of biomolecules that participate in interactions of moderate-to-low affinity. |
doi_str_mv | 10.1016/j.bpj.2012.04.028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3368131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349512005024</els_id><sourcerecordid>2686617161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c569t-c893e7f26a738b217ea021d00a581831fe97f4a47942c1275fa006d680ae4dee3</originalsourceid><addsrcrecordid>eNp9kc1u1DAURi0EokPhAdiAJTZsEvybOEJCqoYWkAoI2q4tj3M98ZCJg51Uap8eR1MqYMHKsnzup_v5IPSckpISWr3ZlZtxVzJCWUlESZh6gFZUClYQoqqHaEUIqQouGnmEnqS0IxmUhD5GR4zVlEvFVsiuOxONnSD6WzP5MODg8HsTf-BvMwy2g4jXXQz7MHYhQsIm4S9hcP283CwMEz6xFsYpxIRdiPjCD9seis-hBzv3gM--n14-RY-c6RM8uzuP0dXZ6eX6Y3H-9cOn9cl5YWXVTIVVDYfascrUXG0YrcEQRltCjFRUceqgqZ0wom4Es5TV0pncr60UMSBaAH6M3h1yx3mzh3bZLppej9HvTbzRwXj998vgO70N15rzSlFOc8Dru4AYfs6QJr33uWTfmwHCnDTN-whJm6bK6Kt_0F2Y45DrLRThrBKVyhQ9UDaGlCK4-2Uo0YtCvdNZoV4UaiJ0VphnXvzZ4n7it7MMvDwAzgRtttEnfXWRE2T2uwiWmXh7ICD_9rWHqJP12Sa0PoKddBv8fxb4Bdq6tck</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1020326468</pqid></control><display><type>article</type><title>Characterization of Dark Quencher Chromophores as Nonfluorescent Acceptors for Single-Molecule FRET</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Le Reste, Ludovic ; Hohlbein, Johannes ; Gryte, Kristofer ; Kapanidis, Achillefs N.</creator><creatorcontrib>Le Reste, Ludovic ; Hohlbein, Johannes ; Gryte, Kristofer ; Kapanidis, Achillefs N.</creatorcontrib><description>Dark quenchers are chromophores that primarily relax from the excited state to the ground state nonradiatively (i.e., are dark). As a result, they can serve as acceptors for Förster resonance energy transfer experiments without contributing significantly to background in the donor-emission channel, even at high concentrations. Although the advantages of dark quenchers have been exploited for ensemble bioassays, no systematic single-molecule study of dark quenchers has been performed, and little is known about their photophysical properties. Here, we present the first systematic single-molecule study of dark quenchers in conjunction with fluorophores and demonstrate the use of dark quenchers for monitoring multiple interactions and distances in multichromophore systems. Specifically, using double-stranded DNA standards labeled with two fluorophores and a dark quencher (either QSY7 or QSY21), we show that the proximity of a fluorophore and dark quencher can be monitored using the stoichiometry ratio available from alternating laser excitation spectroscopy experiments, either for single molecules diffusing in solution (using a confocal fluorescence) or immobilized on surfaces (using total-internal-reflection fluorescence). The latter experiments allowed characterization of the dark-quencher photophysical properties at the single-molecule level. We also use dark-quenchers to study the affinity and kinetics of binding of DNA Polymerase I (Klenow fragment) to DNA. The measured properties are in excellent agreement with the results of ensemble assays, validating the use of dark quenchers. Because dark-quencher-labeled biomolecules can be used in total-internal-reflection fluorescence experiments at concentrations of 1 μM or more without introducing a significant background, the use of dark quenchers should permit single-molecule Förster resonance energy transfer measurements for the large number of biomolecules that participate in interactions of moderate-to-low affinity.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2012.04.028</identifier><identifier>PMID: 22713582</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Base Sequence ; Bioassays ; Darkness ; DNA ; DNA - genetics ; DNA - metabolism ; DNA polymerase ; DNA-directed DNA polymerase ; DNA-Directed DNA Polymerase - metabolism ; energy transfer ; fluorescence ; Fluorescence Resonance Energy Transfer - methods ; Fluorescent Dyes - metabolism ; Kinetics ; Measurement ; Models, Molecular ; Molecular Sequence Data ; Molecules ; monitoring ; Protein Binding ; Reference Standards ; spectroscopy ; Spectroscopy, Imaging, and Other Techniques ; stoichiometry ; Time Factors</subject><ispartof>Biophysical journal, 2012-06, Vol.102 (11), p.2658-2668</ispartof><rights>2012 Biophysical Society</rights><rights>Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Jun 6, 2012</rights><rights>2012 by the Biophysical Society. 2012 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c569t-c893e7f26a738b217ea021d00a581831fe97f4a47942c1275fa006d680ae4dee3</citedby><cites>FETCH-LOGICAL-c569t-c893e7f26a738b217ea021d00a581831fe97f4a47942c1275fa006d680ae4dee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3368131/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2012.04.028$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22713582$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Le Reste, Ludovic</creatorcontrib><creatorcontrib>Hohlbein, Johannes</creatorcontrib><creatorcontrib>Gryte, Kristofer</creatorcontrib><creatorcontrib>Kapanidis, Achillefs N.</creatorcontrib><title>Characterization of Dark Quencher Chromophores as Nonfluorescent Acceptors for Single-Molecule FRET</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Dark quenchers are chromophores that primarily relax from the excited state to the ground state nonradiatively (i.e., are dark). As a result, they can serve as acceptors for Förster resonance energy transfer experiments without contributing significantly to background in the donor-emission channel, even at high concentrations. Although the advantages of dark quenchers have been exploited for ensemble bioassays, no systematic single-molecule study of dark quenchers has been performed, and little is known about their photophysical properties. Here, we present the first systematic single-molecule study of dark quenchers in conjunction with fluorophores and demonstrate the use of dark quenchers for monitoring multiple interactions and distances in multichromophore systems. Specifically, using double-stranded DNA standards labeled with two fluorophores and a dark quencher (either QSY7 or QSY21), we show that the proximity of a fluorophore and dark quencher can be monitored using the stoichiometry ratio available from alternating laser excitation spectroscopy experiments, either for single molecules diffusing in solution (using a confocal fluorescence) or immobilized on surfaces (using total-internal-reflection fluorescence). The latter experiments allowed characterization of the dark-quencher photophysical properties at the single-molecule level. We also use dark-quenchers to study the affinity and kinetics of binding of DNA Polymerase I (Klenow fragment) to DNA. The measured properties are in excellent agreement with the results of ensemble assays, validating the use of dark quenchers. Because dark-quencher-labeled biomolecules can be used in total-internal-reflection fluorescence experiments at concentrations of 1 μM or more without introducing a significant background, the use of dark quenchers should permit single-molecule Förster resonance energy transfer measurements for the large number of biomolecules that participate in interactions of moderate-to-low affinity.</description><subject>Base Sequence</subject><subject>Bioassays</subject><subject>Darkness</subject><subject>DNA</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>DNA polymerase</subject><subject>DNA-directed DNA polymerase</subject><subject>DNA-Directed DNA Polymerase - metabolism</subject><subject>energy transfer</subject><subject>fluorescence</subject><subject>Fluorescence Resonance Energy Transfer - methods</subject><subject>Fluorescent Dyes - metabolism</subject><subject>Kinetics</subject><subject>Measurement</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Molecules</subject><subject>monitoring</subject><subject>Protein Binding</subject><subject>Reference Standards</subject><subject>spectroscopy</subject><subject>Spectroscopy, Imaging, and Other Techniques</subject><subject>stoichiometry</subject><subject>Time Factors</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAURi0EokPhAdiAJTZsEvybOEJCqoYWkAoI2q4tj3M98ZCJg51Uap8eR1MqYMHKsnzup_v5IPSckpISWr3ZlZtxVzJCWUlESZh6gFZUClYQoqqHaEUIqQouGnmEnqS0IxmUhD5GR4zVlEvFVsiuOxONnSD6WzP5MODg8HsTf-BvMwy2g4jXXQz7MHYhQsIm4S9hcP283CwMEz6xFsYpxIRdiPjCD9seis-hBzv3gM--n14-RY-c6RM8uzuP0dXZ6eX6Y3H-9cOn9cl5YWXVTIVVDYfascrUXG0YrcEQRltCjFRUceqgqZ0wom4Es5TV0pncr60UMSBaAH6M3h1yx3mzh3bZLppej9HvTbzRwXj998vgO70N15rzSlFOc8Dru4AYfs6QJr33uWTfmwHCnDTN-whJm6bK6Kt_0F2Y45DrLRThrBKVyhQ9UDaGlCK4-2Uo0YtCvdNZoV4UaiJ0VphnXvzZ4n7it7MMvDwAzgRtttEnfXWRE2T2uwiWmXh7ICD_9rWHqJP12Sa0PoKddBv8fxb4Bdq6tck</recordid><startdate>20120606</startdate><enddate>20120606</enddate><creator>Le Reste, Ludovic</creator><creator>Hohlbein, Johannes</creator><creator>Gryte, Kristofer</creator><creator>Kapanidis, Achillefs N.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120606</creationdate><title>Characterization of Dark Quencher Chromophores as Nonfluorescent Acceptors for Single-Molecule FRET</title><author>Le Reste, Ludovic ; Hohlbein, Johannes ; Gryte, Kristofer ; Kapanidis, Achillefs N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c569t-c893e7f26a738b217ea021d00a581831fe97f4a47942c1275fa006d680ae4dee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Base Sequence</topic><topic>Bioassays</topic><topic>Darkness</topic><topic>DNA</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>DNA polymerase</topic><topic>DNA-directed DNA polymerase</topic><topic>DNA-Directed DNA Polymerase - metabolism</topic><topic>energy transfer</topic><topic>fluorescence</topic><topic>Fluorescence Resonance Energy Transfer - methods</topic><topic>Fluorescent Dyes - metabolism</topic><topic>Kinetics</topic><topic>Measurement</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Molecules</topic><topic>monitoring</topic><topic>Protein Binding</topic><topic>Reference Standards</topic><topic>spectroscopy</topic><topic>Spectroscopy, Imaging, and Other Techniques</topic><topic>stoichiometry</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le Reste, Ludovic</creatorcontrib><creatorcontrib>Hohlbein, Johannes</creatorcontrib><creatorcontrib>Gryte, Kristofer</creatorcontrib><creatorcontrib>Kapanidis, Achillefs N.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le Reste, Ludovic</au><au>Hohlbein, Johannes</au><au>Gryte, Kristofer</au><au>Kapanidis, Achillefs N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Dark Quencher Chromophores as Nonfluorescent Acceptors for Single-Molecule FRET</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2012-06-06</date><risdate>2012</risdate><volume>102</volume><issue>11</issue><spage>2658</spage><epage>2668</epage><pages>2658-2668</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Dark quenchers are chromophores that primarily relax from the excited state to the ground state nonradiatively (i.e., are dark). As a result, they can serve as acceptors for Förster resonance energy transfer experiments without contributing significantly to background in the donor-emission channel, even at high concentrations. Although the advantages of dark quenchers have been exploited for ensemble bioassays, no systematic single-molecule study of dark quenchers has been performed, and little is known about their photophysical properties. Here, we present the first systematic single-molecule study of dark quenchers in conjunction with fluorophores and demonstrate the use of dark quenchers for monitoring multiple interactions and distances in multichromophore systems. Specifically, using double-stranded DNA standards labeled with two fluorophores and a dark quencher (either QSY7 or QSY21), we show that the proximity of a fluorophore and dark quencher can be monitored using the stoichiometry ratio available from alternating laser excitation spectroscopy experiments, either for single molecules diffusing in solution (using a confocal fluorescence) or immobilized on surfaces (using total-internal-reflection fluorescence). The latter experiments allowed characterization of the dark-quencher photophysical properties at the single-molecule level. We also use dark-quenchers to study the affinity and kinetics of binding of DNA Polymerase I (Klenow fragment) to DNA. The measured properties are in excellent agreement with the results of ensemble assays, validating the use of dark quenchers. Because dark-quencher-labeled biomolecules can be used in total-internal-reflection fluorescence experiments at concentrations of 1 μM or more without introducing a significant background, the use of dark quenchers should permit single-molecule Förster resonance energy transfer measurements for the large number of biomolecules that participate in interactions of moderate-to-low affinity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22713582</pmid><doi>10.1016/j.bpj.2012.04.028</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2012-06, Vol.102 (11), p.2658-2668 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3368131 |
source | MEDLINE; Cell Press Free Archives; ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Base Sequence Bioassays Darkness DNA DNA - genetics DNA - metabolism DNA polymerase DNA-directed DNA polymerase DNA-Directed DNA Polymerase - metabolism energy transfer fluorescence Fluorescence Resonance Energy Transfer - methods Fluorescent Dyes - metabolism Kinetics Measurement Models, Molecular Molecular Sequence Data Molecules monitoring Protein Binding Reference Standards spectroscopy Spectroscopy, Imaging, and Other Techniques stoichiometry Time Factors |
title | Characterization of Dark Quencher Chromophores as Nonfluorescent Acceptors for Single-Molecule FRET |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A48%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Dark%20Quencher%20Chromophores%20as%20Nonfluorescent%20Acceptors%20for%20Single-Molecule%20FRET&rft.jtitle=Biophysical%20journal&rft.au=Le%20Reste,%20Ludovic&rft.date=2012-06-06&rft.volume=102&rft.issue=11&rft.spage=2658&rft.epage=2668&rft.pages=2658-2668&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2012.04.028&rft_dat=%3Cproquest_pubme%3E2686617161%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1020326468&rft_id=info:pmid/22713582&rft_els_id=S0006349512005024&rfr_iscdi=true |