Dissecting Chemical Interactions Governing RNA Polymerase II Transcriptional Fidelity

Maintaining high transcriptional fidelity is essential to life. For all eukaryotic organisms, RNA polymerase II (Pol II) is responsible for messenger RNA synthesis from the DNA template. Three key checkpoint steps are important in controlling Pol II transcriptional fidelity: nucleotide selection and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2012-05, Vol.134 (19), p.8231-8240
Hauptverfasser: Kellinger, Matthew W, Ulrich, Sébastien, Chong, Jenny, Kool, Eric T, Wang, Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8240
container_issue 19
container_start_page 8231
container_title Journal of the American Chemical Society
container_volume 134
creator Kellinger, Matthew W
Ulrich, Sébastien
Chong, Jenny
Kool, Eric T
Wang, Dong
description Maintaining high transcriptional fidelity is essential to life. For all eukaryotic organisms, RNA polymerase II (Pol II) is responsible for messenger RNA synthesis from the DNA template. Three key checkpoint steps are important in controlling Pol II transcriptional fidelity: nucleotide selection and incorporation, RNA transcript extension, and proofreading. Some types of DNA damage significantly reduce transcriptional fidelity. However, the chemical interactions governing each individual checkpoint step of Pol II transcriptional fidelity and the molecular basis of how subtle DNA base damage leads to significant losses of transcriptional fidelity are not fully understood. Here we use a series of “hydrogen bond deficient” nucleoside analogues to dissect chemical interactions governing Pol II transcriptional fidelity. We find that whereas hydrogen bonds between a Watson–Crick base pair of template DNA and incoming NTP are critical for efficient incorporation, they are not required for efficient transcript extension from this matched 3′-RNA end. In sharp contrast, the fidelity of extension is strongly dependent on the discrimination of an incorrect pattern of hydrogen bonds. We show that U:T wobble base interactions are critical to prevent extension of this mismatch by Pol II. Additionally, both hydrogen bonding and base stacking play important roles in controlling Pol II proofreading activity. Strong base stacking at the 3′-RNA terminus can compensate for loss of hydrogen bonds. Finally, we show that Pol II can distinguish very subtle size differences in template bases. The current work provides the first systematic evaluation of electrostatic and steric effects in controlling Pol II transcriptional fidelity.
doi_str_mv 10.1021/ja302077d
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3367139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1014111139</sourcerecordid><originalsourceid>FETCH-LOGICAL-a471t-56d5c015563e6c44aa8a8db5115ccf45729c6c0d3d00f550054b9bd3b43ae3ac3</originalsourceid><addsrcrecordid>eNptkUtLAzEUhYMotj4W_gGZjaCL0ZvXTLsRSrW1UFSkXYdMJm1TZiY1mSn035vaWhS8m3BzvpwbzkXoCsM9BoIflpICgTTNj1AbcwIxxyQ5Rm0AIHHaSWgLnXm_DC0jHXyKWoRw6KaMt9H0yXivVW2qedRf6NIoWUSjqtZOhktb-Who19pVW_3jtRe922JTBtHraDSKJk5WXjmz2qLh4cDkujD15gKdzGTh9eX-PEfTwfOk_xKP34ajfm8cS5biOuZJzhVgzhOqE8WYlB3ZyTOOMVdqxnhKuipRkNMcYMY5AGdZN8tpxqjUVCp6jh53vqsmK3WudFU7WYiVM6V0G2GlEX-VyizE3K4FpUmKaTcY3O4NnP1stK9FabzSRSErbRsvMGCGQ32jdztUOeu907PDGAxiuwZxWENgr3__60D-5B6Amx0glRdL27iQnv_H6AsXG4_T</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1014111139</pqid></control><display><type>article</type><title>Dissecting Chemical Interactions Governing RNA Polymerase II Transcriptional Fidelity</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Kellinger, Matthew W ; Ulrich, Sébastien ; Chong, Jenny ; Kool, Eric T ; Wang, Dong</creator><creatorcontrib>Kellinger, Matthew W ; Ulrich, Sébastien ; Chong, Jenny ; Kool, Eric T ; Wang, Dong</creatorcontrib><description>Maintaining high transcriptional fidelity is essential to life. For all eukaryotic organisms, RNA polymerase II (Pol II) is responsible for messenger RNA synthesis from the DNA template. Three key checkpoint steps are important in controlling Pol II transcriptional fidelity: nucleotide selection and incorporation, RNA transcript extension, and proofreading. Some types of DNA damage significantly reduce transcriptional fidelity. However, the chemical interactions governing each individual checkpoint step of Pol II transcriptional fidelity and the molecular basis of how subtle DNA base damage leads to significant losses of transcriptional fidelity are not fully understood. Here we use a series of “hydrogen bond deficient” nucleoside analogues to dissect chemical interactions governing Pol II transcriptional fidelity. We find that whereas hydrogen bonds between a Watson–Crick base pair of template DNA and incoming NTP are critical for efficient incorporation, they are not required for efficient transcript extension from this matched 3′-RNA end. In sharp contrast, the fidelity of extension is strongly dependent on the discrimination of an incorrect pattern of hydrogen bonds. We show that U:T wobble base interactions are critical to prevent extension of this mismatch by Pol II. Additionally, both hydrogen bonding and base stacking play important roles in controlling Pol II proofreading activity. Strong base stacking at the 3′-RNA terminus can compensate for loss of hydrogen bonds. Finally, we show that Pol II can distinguish very subtle size differences in template bases. The current work provides the first systematic evaluation of electrostatic and steric effects in controlling Pol II transcriptional fidelity.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja302077d</identifier><identifier>PMID: 22509745</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Base Sequence ; DNA - chemistry ; DNA - genetics ; DNA - metabolism ; Hydrogen Bonding ; Models, Molecular ; Protein Conformation ; RNA Polymerase II - chemistry ; RNA Polymerase II - metabolism ; Saccharomyces cerevisiae - enzymology ; Thymine - chemistry ; Transcription, Genetic</subject><ispartof>Journal of the American Chemical Society, 2012-05, Vol.134 (19), p.8231-8240</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a471t-56d5c015563e6c44aa8a8db5115ccf45729c6c0d3d00f550054b9bd3b43ae3ac3</citedby><cites>FETCH-LOGICAL-a471t-56d5c015563e6c44aa8a8db5115ccf45729c6c0d3d00f550054b9bd3b43ae3ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja302077d$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja302077d$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22509745$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kellinger, Matthew W</creatorcontrib><creatorcontrib>Ulrich, Sébastien</creatorcontrib><creatorcontrib>Chong, Jenny</creatorcontrib><creatorcontrib>Kool, Eric T</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><title>Dissecting Chemical Interactions Governing RNA Polymerase II Transcriptional Fidelity</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Maintaining high transcriptional fidelity is essential to life. For all eukaryotic organisms, RNA polymerase II (Pol II) is responsible for messenger RNA synthesis from the DNA template. Three key checkpoint steps are important in controlling Pol II transcriptional fidelity: nucleotide selection and incorporation, RNA transcript extension, and proofreading. Some types of DNA damage significantly reduce transcriptional fidelity. However, the chemical interactions governing each individual checkpoint step of Pol II transcriptional fidelity and the molecular basis of how subtle DNA base damage leads to significant losses of transcriptional fidelity are not fully understood. Here we use a series of “hydrogen bond deficient” nucleoside analogues to dissect chemical interactions governing Pol II transcriptional fidelity. We find that whereas hydrogen bonds between a Watson–Crick base pair of template DNA and incoming NTP are critical for efficient incorporation, they are not required for efficient transcript extension from this matched 3′-RNA end. In sharp contrast, the fidelity of extension is strongly dependent on the discrimination of an incorrect pattern of hydrogen bonds. We show that U:T wobble base interactions are critical to prevent extension of this mismatch by Pol II. Additionally, both hydrogen bonding and base stacking play important roles in controlling Pol II proofreading activity. Strong base stacking at the 3′-RNA terminus can compensate for loss of hydrogen bonds. Finally, we show that Pol II can distinguish very subtle size differences in template bases. The current work provides the first systematic evaluation of electrostatic and steric effects in controlling Pol II transcriptional fidelity.</description><subject>Base Sequence</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>Hydrogen Bonding</subject><subject>Models, Molecular</subject><subject>Protein Conformation</subject><subject>RNA Polymerase II - chemistry</subject><subject>RNA Polymerase II - metabolism</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Thymine - chemistry</subject><subject>Transcription, Genetic</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkUtLAzEUhYMotj4W_gGZjaCL0ZvXTLsRSrW1UFSkXYdMJm1TZiY1mSn035vaWhS8m3BzvpwbzkXoCsM9BoIflpICgTTNj1AbcwIxxyQ5Rm0AIHHaSWgLnXm_DC0jHXyKWoRw6KaMt9H0yXivVW2qedRf6NIoWUSjqtZOhktb-Who19pVW_3jtRe922JTBtHraDSKJk5WXjmz2qLh4cDkujD15gKdzGTh9eX-PEfTwfOk_xKP34ajfm8cS5biOuZJzhVgzhOqE8WYlB3ZyTOOMVdqxnhKuipRkNMcYMY5AGdZN8tpxqjUVCp6jh53vqsmK3WudFU7WYiVM6V0G2GlEX-VyizE3K4FpUmKaTcY3O4NnP1stK9FabzSRSErbRsvMGCGQ32jdztUOeu907PDGAxiuwZxWENgr3__60D-5B6Amx0glRdL27iQnv_H6AsXG4_T</recordid><startdate>20120516</startdate><enddate>20120516</enddate><creator>Kellinger, Matthew W</creator><creator>Ulrich, Sébastien</creator><creator>Chong, Jenny</creator><creator>Kool, Eric T</creator><creator>Wang, Dong</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120516</creationdate><title>Dissecting Chemical Interactions Governing RNA Polymerase II Transcriptional Fidelity</title><author>Kellinger, Matthew W ; Ulrich, Sébastien ; Chong, Jenny ; Kool, Eric T ; Wang, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a471t-56d5c015563e6c44aa8a8db5115ccf45729c6c0d3d00f550054b9bd3b43ae3ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Base Sequence</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>Hydrogen Bonding</topic><topic>Models, Molecular</topic><topic>Protein Conformation</topic><topic>RNA Polymerase II - chemistry</topic><topic>RNA Polymerase II - metabolism</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Thymine - chemistry</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kellinger, Matthew W</creatorcontrib><creatorcontrib>Ulrich, Sébastien</creatorcontrib><creatorcontrib>Chong, Jenny</creatorcontrib><creatorcontrib>Kool, Eric T</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kellinger, Matthew W</au><au>Ulrich, Sébastien</au><au>Chong, Jenny</au><au>Kool, Eric T</au><au>Wang, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissecting Chemical Interactions Governing RNA Polymerase II Transcriptional Fidelity</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2012-05-16</date><risdate>2012</risdate><volume>134</volume><issue>19</issue><spage>8231</spage><epage>8240</epage><pages>8231-8240</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Maintaining high transcriptional fidelity is essential to life. For all eukaryotic organisms, RNA polymerase II (Pol II) is responsible for messenger RNA synthesis from the DNA template. Three key checkpoint steps are important in controlling Pol II transcriptional fidelity: nucleotide selection and incorporation, RNA transcript extension, and proofreading. Some types of DNA damage significantly reduce transcriptional fidelity. However, the chemical interactions governing each individual checkpoint step of Pol II transcriptional fidelity and the molecular basis of how subtle DNA base damage leads to significant losses of transcriptional fidelity are not fully understood. Here we use a series of “hydrogen bond deficient” nucleoside analogues to dissect chemical interactions governing Pol II transcriptional fidelity. We find that whereas hydrogen bonds between a Watson–Crick base pair of template DNA and incoming NTP are critical for efficient incorporation, they are not required for efficient transcript extension from this matched 3′-RNA end. In sharp contrast, the fidelity of extension is strongly dependent on the discrimination of an incorrect pattern of hydrogen bonds. We show that U:T wobble base interactions are critical to prevent extension of this mismatch by Pol II. Additionally, both hydrogen bonding and base stacking play important roles in controlling Pol II proofreading activity. Strong base stacking at the 3′-RNA terminus can compensate for loss of hydrogen bonds. Finally, we show that Pol II can distinguish very subtle size differences in template bases. The current work provides the first systematic evaluation of electrostatic and steric effects in controlling Pol II transcriptional fidelity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>22509745</pmid><doi>10.1021/ja302077d</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2012-05, Vol.134 (19), p.8231-8240
issn 0002-7863
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3367139
source MEDLINE; American Chemical Society Journals
subjects Base Sequence
DNA - chemistry
DNA - genetics
DNA - metabolism
Hydrogen Bonding
Models, Molecular
Protein Conformation
RNA Polymerase II - chemistry
RNA Polymerase II - metabolism
Saccharomyces cerevisiae - enzymology
Thymine - chemistry
Transcription, Genetic
title Dissecting Chemical Interactions Governing RNA Polymerase II Transcriptional Fidelity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A49%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissecting%20Chemical%20Interactions%20Governing%20RNA%20Polymerase%20II%20Transcriptional%20Fidelity&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Kellinger,%20Matthew%20W&rft.date=2012-05-16&rft.volume=134&rft.issue=19&rft.spage=8231&rft.epage=8240&rft.pages=8231-8240&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja302077d&rft_dat=%3Cproquest_pubme%3E1014111139%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1014111139&rft_id=info:pmid/22509745&rfr_iscdi=true