Dissecting Chemical Interactions Governing RNA Polymerase II Transcriptional Fidelity
Maintaining high transcriptional fidelity is essential to life. For all eukaryotic organisms, RNA polymerase II (Pol II) is responsible for messenger RNA synthesis from the DNA template. Three key checkpoint steps are important in controlling Pol II transcriptional fidelity: nucleotide selection and...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2012-05, Vol.134 (19), p.8231-8240 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8240 |
---|---|
container_issue | 19 |
container_start_page | 8231 |
container_title | Journal of the American Chemical Society |
container_volume | 134 |
creator | Kellinger, Matthew W Ulrich, Sébastien Chong, Jenny Kool, Eric T Wang, Dong |
description | Maintaining high transcriptional fidelity is essential to life. For all eukaryotic organisms, RNA polymerase II (Pol II) is responsible for messenger RNA synthesis from the DNA template. Three key checkpoint steps are important in controlling Pol II transcriptional fidelity: nucleotide selection and incorporation, RNA transcript extension, and proofreading. Some types of DNA damage significantly reduce transcriptional fidelity. However, the chemical interactions governing each individual checkpoint step of Pol II transcriptional fidelity and the molecular basis of how subtle DNA base damage leads to significant losses of transcriptional fidelity are not fully understood. Here we use a series of “hydrogen bond deficient” nucleoside analogues to dissect chemical interactions governing Pol II transcriptional fidelity. We find that whereas hydrogen bonds between a Watson–Crick base pair of template DNA and incoming NTP are critical for efficient incorporation, they are not required for efficient transcript extension from this matched 3′-RNA end. In sharp contrast, the fidelity of extension is strongly dependent on the discrimination of an incorrect pattern of hydrogen bonds. We show that U:T wobble base interactions are critical to prevent extension of this mismatch by Pol II. Additionally, both hydrogen bonding and base stacking play important roles in controlling Pol II proofreading activity. Strong base stacking at the 3′-RNA terminus can compensate for loss of hydrogen bonds. Finally, we show that Pol II can distinguish very subtle size differences in template bases. The current work provides the first systematic evaluation of electrostatic and steric effects in controlling Pol II transcriptional fidelity. |
doi_str_mv | 10.1021/ja302077d |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3367139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1014111139</sourcerecordid><originalsourceid>FETCH-LOGICAL-a471t-56d5c015563e6c44aa8a8db5115ccf45729c6c0d3d00f550054b9bd3b43ae3ac3</originalsourceid><addsrcrecordid>eNptkUtLAzEUhYMotj4W_gGZjaCL0ZvXTLsRSrW1UFSkXYdMJm1TZiY1mSn035vaWhS8m3BzvpwbzkXoCsM9BoIflpICgTTNj1AbcwIxxyQ5Rm0AIHHaSWgLnXm_DC0jHXyKWoRw6KaMt9H0yXivVW2qedRf6NIoWUSjqtZOhktb-Who19pVW_3jtRe922JTBtHraDSKJk5WXjmz2qLh4cDkujD15gKdzGTh9eX-PEfTwfOk_xKP34ajfm8cS5biOuZJzhVgzhOqE8WYlB3ZyTOOMVdqxnhKuipRkNMcYMY5AGdZN8tpxqjUVCp6jh53vqsmK3WudFU7WYiVM6V0G2GlEX-VyizE3K4FpUmKaTcY3O4NnP1stK9FabzSRSErbRsvMGCGQ32jdztUOeu907PDGAxiuwZxWENgr3__60D-5B6Amx0glRdL27iQnv_H6AsXG4_T</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1014111139</pqid></control><display><type>article</type><title>Dissecting Chemical Interactions Governing RNA Polymerase II Transcriptional Fidelity</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Kellinger, Matthew W ; Ulrich, Sébastien ; Chong, Jenny ; Kool, Eric T ; Wang, Dong</creator><creatorcontrib>Kellinger, Matthew W ; Ulrich, Sébastien ; Chong, Jenny ; Kool, Eric T ; Wang, Dong</creatorcontrib><description>Maintaining high transcriptional fidelity is essential to life. For all eukaryotic organisms, RNA polymerase II (Pol II) is responsible for messenger RNA synthesis from the DNA template. Three key checkpoint steps are important in controlling Pol II transcriptional fidelity: nucleotide selection and incorporation, RNA transcript extension, and proofreading. Some types of DNA damage significantly reduce transcriptional fidelity. However, the chemical interactions governing each individual checkpoint step of Pol II transcriptional fidelity and the molecular basis of how subtle DNA base damage leads to significant losses of transcriptional fidelity are not fully understood. Here we use a series of “hydrogen bond deficient” nucleoside analogues to dissect chemical interactions governing Pol II transcriptional fidelity. We find that whereas hydrogen bonds between a Watson–Crick base pair of template DNA and incoming NTP are critical for efficient incorporation, they are not required for efficient transcript extension from this matched 3′-RNA end. In sharp contrast, the fidelity of extension is strongly dependent on the discrimination of an incorrect pattern of hydrogen bonds. We show that U:T wobble base interactions are critical to prevent extension of this mismatch by Pol II. Additionally, both hydrogen bonding and base stacking play important roles in controlling Pol II proofreading activity. Strong base stacking at the 3′-RNA terminus can compensate for loss of hydrogen bonds. Finally, we show that Pol II can distinguish very subtle size differences in template bases. The current work provides the first systematic evaluation of electrostatic and steric effects in controlling Pol II transcriptional fidelity.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja302077d</identifier><identifier>PMID: 22509745</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Base Sequence ; DNA - chemistry ; DNA - genetics ; DNA - metabolism ; Hydrogen Bonding ; Models, Molecular ; Protein Conformation ; RNA Polymerase II - chemistry ; RNA Polymerase II - metabolism ; Saccharomyces cerevisiae - enzymology ; Thymine - chemistry ; Transcription, Genetic</subject><ispartof>Journal of the American Chemical Society, 2012-05, Vol.134 (19), p.8231-8240</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a471t-56d5c015563e6c44aa8a8db5115ccf45729c6c0d3d00f550054b9bd3b43ae3ac3</citedby><cites>FETCH-LOGICAL-a471t-56d5c015563e6c44aa8a8db5115ccf45729c6c0d3d00f550054b9bd3b43ae3ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja302077d$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja302077d$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22509745$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kellinger, Matthew W</creatorcontrib><creatorcontrib>Ulrich, Sébastien</creatorcontrib><creatorcontrib>Chong, Jenny</creatorcontrib><creatorcontrib>Kool, Eric T</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><title>Dissecting Chemical Interactions Governing RNA Polymerase II Transcriptional Fidelity</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Maintaining high transcriptional fidelity is essential to life. For all eukaryotic organisms, RNA polymerase II (Pol II) is responsible for messenger RNA synthesis from the DNA template. Three key checkpoint steps are important in controlling Pol II transcriptional fidelity: nucleotide selection and incorporation, RNA transcript extension, and proofreading. Some types of DNA damage significantly reduce transcriptional fidelity. However, the chemical interactions governing each individual checkpoint step of Pol II transcriptional fidelity and the molecular basis of how subtle DNA base damage leads to significant losses of transcriptional fidelity are not fully understood. Here we use a series of “hydrogen bond deficient” nucleoside analogues to dissect chemical interactions governing Pol II transcriptional fidelity. We find that whereas hydrogen bonds between a Watson–Crick base pair of template DNA and incoming NTP are critical for efficient incorporation, they are not required for efficient transcript extension from this matched 3′-RNA end. In sharp contrast, the fidelity of extension is strongly dependent on the discrimination of an incorrect pattern of hydrogen bonds. We show that U:T wobble base interactions are critical to prevent extension of this mismatch by Pol II. Additionally, both hydrogen bonding and base stacking play important roles in controlling Pol II proofreading activity. Strong base stacking at the 3′-RNA terminus can compensate for loss of hydrogen bonds. Finally, we show that Pol II can distinguish very subtle size differences in template bases. The current work provides the first systematic evaluation of electrostatic and steric effects in controlling Pol II transcriptional fidelity.</description><subject>Base Sequence</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>Hydrogen Bonding</subject><subject>Models, Molecular</subject><subject>Protein Conformation</subject><subject>RNA Polymerase II - chemistry</subject><subject>RNA Polymerase II - metabolism</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Thymine - chemistry</subject><subject>Transcription, Genetic</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkUtLAzEUhYMotj4W_gGZjaCL0ZvXTLsRSrW1UFSkXYdMJm1TZiY1mSn035vaWhS8m3BzvpwbzkXoCsM9BoIflpICgTTNj1AbcwIxxyQ5Rm0AIHHaSWgLnXm_DC0jHXyKWoRw6KaMt9H0yXivVW2qedRf6NIoWUSjqtZOhktb-Who19pVW_3jtRe922JTBtHraDSKJk5WXjmz2qLh4cDkujD15gKdzGTh9eX-PEfTwfOk_xKP34ajfm8cS5biOuZJzhVgzhOqE8WYlB3ZyTOOMVdqxnhKuipRkNMcYMY5AGdZN8tpxqjUVCp6jh53vqsmK3WudFU7WYiVM6V0G2GlEX-VyizE3K4FpUmKaTcY3O4NnP1stK9FabzSRSErbRsvMGCGQ32jdztUOeu907PDGAxiuwZxWENgr3__60D-5B6Amx0glRdL27iQnv_H6AsXG4_T</recordid><startdate>20120516</startdate><enddate>20120516</enddate><creator>Kellinger, Matthew W</creator><creator>Ulrich, Sébastien</creator><creator>Chong, Jenny</creator><creator>Kool, Eric T</creator><creator>Wang, Dong</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120516</creationdate><title>Dissecting Chemical Interactions Governing RNA Polymerase II Transcriptional Fidelity</title><author>Kellinger, Matthew W ; Ulrich, Sébastien ; Chong, Jenny ; Kool, Eric T ; Wang, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a471t-56d5c015563e6c44aa8a8db5115ccf45729c6c0d3d00f550054b9bd3b43ae3ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Base Sequence</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>Hydrogen Bonding</topic><topic>Models, Molecular</topic><topic>Protein Conformation</topic><topic>RNA Polymerase II - chemistry</topic><topic>RNA Polymerase II - metabolism</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Thymine - chemistry</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kellinger, Matthew W</creatorcontrib><creatorcontrib>Ulrich, Sébastien</creatorcontrib><creatorcontrib>Chong, Jenny</creatorcontrib><creatorcontrib>Kool, Eric T</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kellinger, Matthew W</au><au>Ulrich, Sébastien</au><au>Chong, Jenny</au><au>Kool, Eric T</au><au>Wang, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissecting Chemical Interactions Governing RNA Polymerase II Transcriptional Fidelity</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2012-05-16</date><risdate>2012</risdate><volume>134</volume><issue>19</issue><spage>8231</spage><epage>8240</epage><pages>8231-8240</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Maintaining high transcriptional fidelity is essential to life. For all eukaryotic organisms, RNA polymerase II (Pol II) is responsible for messenger RNA synthesis from the DNA template. Three key checkpoint steps are important in controlling Pol II transcriptional fidelity: nucleotide selection and incorporation, RNA transcript extension, and proofreading. Some types of DNA damage significantly reduce transcriptional fidelity. However, the chemical interactions governing each individual checkpoint step of Pol II transcriptional fidelity and the molecular basis of how subtle DNA base damage leads to significant losses of transcriptional fidelity are not fully understood. Here we use a series of “hydrogen bond deficient” nucleoside analogues to dissect chemical interactions governing Pol II transcriptional fidelity. We find that whereas hydrogen bonds between a Watson–Crick base pair of template DNA and incoming NTP are critical for efficient incorporation, they are not required for efficient transcript extension from this matched 3′-RNA end. In sharp contrast, the fidelity of extension is strongly dependent on the discrimination of an incorrect pattern of hydrogen bonds. We show that U:T wobble base interactions are critical to prevent extension of this mismatch by Pol II. Additionally, both hydrogen bonding and base stacking play important roles in controlling Pol II proofreading activity. Strong base stacking at the 3′-RNA terminus can compensate for loss of hydrogen bonds. Finally, we show that Pol II can distinguish very subtle size differences in template bases. The current work provides the first systematic evaluation of electrostatic and steric effects in controlling Pol II transcriptional fidelity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>22509745</pmid><doi>10.1021/ja302077d</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2012-05, Vol.134 (19), p.8231-8240 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3367139 |
source | MEDLINE; American Chemical Society Journals |
subjects | Base Sequence DNA - chemistry DNA - genetics DNA - metabolism Hydrogen Bonding Models, Molecular Protein Conformation RNA Polymerase II - chemistry RNA Polymerase II - metabolism Saccharomyces cerevisiae - enzymology Thymine - chemistry Transcription, Genetic |
title | Dissecting Chemical Interactions Governing RNA Polymerase II Transcriptional Fidelity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A49%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissecting%20Chemical%20Interactions%20Governing%20RNA%20Polymerase%20II%20Transcriptional%20Fidelity&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Kellinger,%20Matthew%20W&rft.date=2012-05-16&rft.volume=134&rft.issue=19&rft.spage=8231&rft.epage=8240&rft.pages=8231-8240&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja302077d&rft_dat=%3Cproquest_pubme%3E1014111139%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1014111139&rft_id=info:pmid/22509745&rfr_iscdi=true |