Amyloid β (Aβ) Peptide Directly Activates Amylin-3 Receptor Subtype by Triggering Multiple Intracellular Signaling Pathways

The two age-prevalent diseases Alzheimer disease and type 2 diabetes mellitus share many common features including the deposition of amyloidogenic proteins, amyloid β protein (Aβ) and amylin (islet amyloid polypeptide), respectively. Recent evidence suggests that both Aβ and amylin may express their...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2012-05, Vol.287 (22), p.18820-18830
Hauptverfasser: Fu, Wen, Ruangkittisakul, Araya, MacTavish, David, Shi, Jenny Y., Ballanyi, Klaus, Jhamandas, Jack H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The two age-prevalent diseases Alzheimer disease and type 2 diabetes mellitus share many common features including the deposition of amyloidogenic proteins, amyloid β protein (Aβ) and amylin (islet amyloid polypeptide), respectively. Recent evidence suggests that both Aβ and amylin may express their effects through the amylin receptor, although the precise mechanisms for this interaction at a cellular level are unknown. Here, we studied this by generating HEK293 cells with stable expression of an isoform of the amylin receptor family, amylin receptor-3 (AMY3). Aβ1–42 and human amylin (hAmylin) increase cytosolic cAMP and Ca2+, trigger multiple pathways involving the signal transduction mediators protein kinase A, MAPK, Akt, and cFos. Aβ1–42 and hAmylin also induce cell death during exposure for 24–48 h at low micromolar concentrations. In the presence of hAmylin, Aβ1–42 effects on HEK293-AMY3-expressing cells are occluded, suggesting a shared mechanism of action between the two peptides. Amylin receptor antagonist AC253 blocks increases in intracellular Ca2+, activation of protein kinase A, MAPK, Akt, cFos, and cell death, which occur upon AMY3 activation with hAmylin, Aβ1–42, or their co-application. Our data suggest that AMY3 plays an important role by serving as a receptor target for actions Aβ and thus may represent a novel therapeutic target for development of compounds to treat neurodegenerative conditions such as Alzheimer disease. Aβ and human amylin peptides share similar biophysical and neurotoxic properties. Aβ directly activates amylin-3 receptor (AMY3) isoform and triggers multiple signaling pathways. Aβ actions are expressed via AMY3 receptors. AMY3 could serve as a therapeutic target for attenuating Aβ toxicity.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M111.331181