Breaking the HAC Barrier: Histone H3K9 acetyl/methyl balance regulates CENP-A assembly

The kinetochore is responsible for accurate chromosome segregation. However, the mechanism by which kinetochores assemble and are maintained remains unclear. Here we report that de novo CENP‐A assembly and kinetochore formation on human centromeric alphoid DNA arrays is regulated by a histone H3K9 a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2012-05, Vol.31 (10), p.2391-2402
Hauptverfasser: Ohzeki, Jun-ichirou, Bergmann, Jan H, Kouprina, Natalay, Noskov, Vladimir N, Nakano, Megumi, Kimura, Hiroshi, Earnshaw, William C, Larionov, Vladimir, Masumoto, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2402
container_issue 10
container_start_page 2391
container_title The EMBO journal
container_volume 31
creator Ohzeki, Jun-ichirou
Bergmann, Jan H
Kouprina, Natalay
Noskov, Vladimir N
Nakano, Megumi
Kimura, Hiroshi
Earnshaw, William C
Larionov, Vladimir
Masumoto, Hiroshi
description The kinetochore is responsible for accurate chromosome segregation. However, the mechanism by which kinetochores assemble and are maintained remains unclear. Here we report that de novo CENP‐A assembly and kinetochore formation on human centromeric alphoid DNA arrays is regulated by a histone H3K9 acetyl/methyl balance. Tethering of histone acetyltransferases (HATs) to alphoid DNA arrays breaks a cell type‐specific barrier for de novo stable CENP‐A assembly and induces assembly of other kinetochore proteins at the ectopic alphoid site. Similar results are obtained following tethering of CENP‐A deposition factors hMis18α or HJURP. HAT tethering bypasses the need for hMis18α, but HJURP is still required for de novo kinetochore assembly. In contrast, H3K9 methylation following tethering of H3K9 tri‐methylase (Suv39h1) to the array prevents de novo CENP‐A assembly and kinetochore formation. CENP‐A arrays assembled de novo by this mechanism can form human artificial chromosomes (HACs) that are propagated indefinitely in human cells. Establishment of Human Artificial Chromosomes (HACs) depends on an interplay of H3 lysine 9 modifications at centromeres, providing insights into the pathways that control incorporation of the kinetochore‐specificing histone H3 variant CENP‐A.
doi_str_mv 10.1038/emboj.2012.82
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3364751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1015093063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6432-1821684866e120f3cad908ca2d2a1effd59b02e901b145dca70604190d3101753</originalsourceid><addsrcrecordid>eNqNkc1v00AQxS0EoqFw5IoscenF6cx-ec0BKYlCArQBia_jam1PEqeOXXYd2vz3rEmJCuLAaVc7vzfzZl8UPUcYInB9Ttu83QwZIBtq9iAaoFCQMEjlw2gATGEiUGcn0RPvNwAgdYqPoxPGRMqRs0H0dezIXlXNKu7WFM9Hk3hsnavIvYrnle_aJjzy91lsC-r29fmWuvW-jnNb26ag2NFqV9uOfDyZLj4mo9h6HwzV-6fRo6WtPT27O0-jL2-mnyfz5OLD7O1kdJEUSnCWoGaotNBKETJY8sKWGejCspJZpOWylFkOjDLAHIUsC5uCAoEZlBwBU8lPo9eHvte7fEtlQU3nbG2uXbW1bm9aW5k_K021Nqv2h-FciVRiaHB218C133fkO7OtfEF12I_anTcITCipOBP_gaKEjIPiAX35F7ppd64JP9FTWmVCSBaoF_fNH13_TicA8gDcVDXtj3UE00dvfkVv-uiNZmZ6OX7X33WvGx50PkiaFbn74_-hDYLkIAiR0-1xkHVXRqU8lebbYmYWnzRcIp8ZwX8Cw7-9Vg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1018694452</pqid></control><display><type>article</type><title>Breaking the HAC Barrier: Histone H3K9 acetyl/methyl balance regulates CENP-A assembly</title><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Ohzeki, Jun-ichirou ; Bergmann, Jan H ; Kouprina, Natalay ; Noskov, Vladimir N ; Nakano, Megumi ; Kimura, Hiroshi ; Earnshaw, William C ; Larionov, Vladimir ; Masumoto, Hiroshi</creator><creatorcontrib>Ohzeki, Jun-ichirou ; Bergmann, Jan H ; Kouprina, Natalay ; Noskov, Vladimir N ; Nakano, Megumi ; Kimura, Hiroshi ; Earnshaw, William C ; Larionov, Vladimir ; Masumoto, Hiroshi</creatorcontrib><description>The kinetochore is responsible for accurate chromosome segregation. However, the mechanism by which kinetochores assemble and are maintained remains unclear. Here we report that de novo CENP‐A assembly and kinetochore formation on human centromeric alphoid DNA arrays is regulated by a histone H3K9 acetyl/methyl balance. Tethering of histone acetyltransferases (HATs) to alphoid DNA arrays breaks a cell type‐specific barrier for de novo stable CENP‐A assembly and induces assembly of other kinetochore proteins at the ectopic alphoid site. Similar results are obtained following tethering of CENP‐A deposition factors hMis18α or HJURP. HAT tethering bypasses the need for hMis18α, but HJURP is still required for de novo kinetochore assembly. In contrast, H3K9 methylation following tethering of H3K9 tri‐methylase (Suv39h1) to the array prevents de novo CENP‐A assembly and kinetochore formation. CENP‐A arrays assembled de novo by this mechanism can form human artificial chromosomes (HACs) that are propagated indefinitely in human cells. Establishment of Human Artificial Chromosomes (HACs) depends on an interplay of H3 lysine 9 modifications at centromeres, providing insights into the pathways that control incorporation of the kinetochore‐specificing histone H3 variant CENP‐A.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1038/emboj.2012.82</identifier><identifier>PMID: 22473132</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Acetylation ; Autoantigens - metabolism ; Cell cycle ; CENP-A ; Centromere Protein A ; centromeres ; Chromosomal Proteins, Non-Histone - metabolism ; Chromosomes ; Deoxyribonucleic acid ; DNA ; DNA - metabolism ; EMBO06 ; EMBO09 ; epigenetic regulation ; Epigenetics ; heterochromatin ; Histones - metabolism ; Humans ; Kinetochores - metabolism ; Methylation ; Molecular biology ; Protein Multimerization ; Protein Processing, Post-Translational ; Proteins</subject><ispartof>The EMBO journal, 2012-05, Vol.31 (10), p.2391-2402</ispartof><rights>European Molecular Biology Organization 2012</rights><rights>Copyright © 2012 European Molecular Biology Organization</rights><rights>Copyright Nature Publishing Group May 16, 2012</rights><rights>Copyright © 2012, European Molecular Biology Organization 2012 European Molecular Biology Organization</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6432-1821684866e120f3cad908ca2d2a1effd59b02e901b145dca70604190d3101753</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3364751/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3364751/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,1418,1434,27926,27927,41122,42191,45576,45577,46411,46835,51578,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22473132$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ohzeki, Jun-ichirou</creatorcontrib><creatorcontrib>Bergmann, Jan H</creatorcontrib><creatorcontrib>Kouprina, Natalay</creatorcontrib><creatorcontrib>Noskov, Vladimir N</creatorcontrib><creatorcontrib>Nakano, Megumi</creatorcontrib><creatorcontrib>Kimura, Hiroshi</creatorcontrib><creatorcontrib>Earnshaw, William C</creatorcontrib><creatorcontrib>Larionov, Vladimir</creatorcontrib><creatorcontrib>Masumoto, Hiroshi</creatorcontrib><title>Breaking the HAC Barrier: Histone H3K9 acetyl/methyl balance regulates CENP-A assembly</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>The kinetochore is responsible for accurate chromosome segregation. However, the mechanism by which kinetochores assemble and are maintained remains unclear. Here we report that de novo CENP‐A assembly and kinetochore formation on human centromeric alphoid DNA arrays is regulated by a histone H3K9 acetyl/methyl balance. Tethering of histone acetyltransferases (HATs) to alphoid DNA arrays breaks a cell type‐specific barrier for de novo stable CENP‐A assembly and induces assembly of other kinetochore proteins at the ectopic alphoid site. Similar results are obtained following tethering of CENP‐A deposition factors hMis18α or HJURP. HAT tethering bypasses the need for hMis18α, but HJURP is still required for de novo kinetochore assembly. In contrast, H3K9 methylation following tethering of H3K9 tri‐methylase (Suv39h1) to the array prevents de novo CENP‐A assembly and kinetochore formation. CENP‐A arrays assembled de novo by this mechanism can form human artificial chromosomes (HACs) that are propagated indefinitely in human cells. Establishment of Human Artificial Chromosomes (HACs) depends on an interplay of H3 lysine 9 modifications at centromeres, providing insights into the pathways that control incorporation of the kinetochore‐specificing histone H3 variant CENP‐A.</description><subject>Acetylation</subject><subject>Autoantigens - metabolism</subject><subject>Cell cycle</subject><subject>CENP-A</subject><subject>Centromere Protein A</subject><subject>centromeres</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>Chromosomes</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - metabolism</subject><subject>EMBO06</subject><subject>EMBO09</subject><subject>epigenetic regulation</subject><subject>Epigenetics</subject><subject>heterochromatin</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Kinetochores - metabolism</subject><subject>Methylation</subject><subject>Molecular biology</subject><subject>Protein Multimerization</subject><subject>Protein Processing, Post-Translational</subject><subject>Proteins</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkc1v00AQxS0EoqFw5IoscenF6cx-ec0BKYlCArQBia_jam1PEqeOXXYd2vz3rEmJCuLAaVc7vzfzZl8UPUcYInB9Ttu83QwZIBtq9iAaoFCQMEjlw2gATGEiUGcn0RPvNwAgdYqPoxPGRMqRs0H0dezIXlXNKu7WFM9Hk3hsnavIvYrnle_aJjzy91lsC-r29fmWuvW-jnNb26ag2NFqV9uOfDyZLj4mo9h6HwzV-6fRo6WtPT27O0-jL2-mnyfz5OLD7O1kdJEUSnCWoGaotNBKETJY8sKWGejCspJZpOWylFkOjDLAHIUsC5uCAoEZlBwBU8lPo9eHvte7fEtlQU3nbG2uXbW1bm9aW5k_K021Nqv2h-FciVRiaHB218C133fkO7OtfEF12I_anTcITCipOBP_gaKEjIPiAX35F7ppd64JP9FTWmVCSBaoF_fNH13_TicA8gDcVDXtj3UE00dvfkVv-uiNZmZ6OX7X33WvGx50PkiaFbn74_-hDYLkIAiR0-1xkHVXRqU8lebbYmYWnzRcIp8ZwX8Cw7-9Vg</recordid><startdate>20120516</startdate><enddate>20120516</enddate><creator>Ohzeki, Jun-ichirou</creator><creator>Bergmann, Jan H</creator><creator>Kouprina, Natalay</creator><creator>Noskov, Vladimir N</creator><creator>Nakano, Megumi</creator><creator>Kimura, Hiroshi</creator><creator>Earnshaw, William C</creator><creator>Larionov, Vladimir</creator><creator>Masumoto, Hiroshi</creator><general>John Wiley &amp; Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>Nature Publishing Group</general><scope>BSCLL</scope><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120516</creationdate><title>Breaking the HAC Barrier: Histone H3K9 acetyl/methyl balance regulates CENP-A assembly</title><author>Ohzeki, Jun-ichirou ; Bergmann, Jan H ; Kouprina, Natalay ; Noskov, Vladimir N ; Nakano, Megumi ; Kimura, Hiroshi ; Earnshaw, William C ; Larionov, Vladimir ; Masumoto, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6432-1821684866e120f3cad908ca2d2a1effd59b02e901b145dca70604190d3101753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acetylation</topic><topic>Autoantigens - metabolism</topic><topic>Cell cycle</topic><topic>CENP-A</topic><topic>Centromere Protein A</topic><topic>centromeres</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>Chromosomes</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - metabolism</topic><topic>EMBO06</topic><topic>EMBO09</topic><topic>epigenetic regulation</topic><topic>Epigenetics</topic><topic>heterochromatin</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Kinetochores - metabolism</topic><topic>Methylation</topic><topic>Molecular biology</topic><topic>Protein Multimerization</topic><topic>Protein Processing, Post-Translational</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohzeki, Jun-ichirou</creatorcontrib><creatorcontrib>Bergmann, Jan H</creatorcontrib><creatorcontrib>Kouprina, Natalay</creatorcontrib><creatorcontrib>Noskov, Vladimir N</creatorcontrib><creatorcontrib>Nakano, Megumi</creatorcontrib><creatorcontrib>Kimura, Hiroshi</creatorcontrib><creatorcontrib>Earnshaw, William C</creatorcontrib><creatorcontrib>Larionov, Vladimir</creatorcontrib><creatorcontrib>Masumoto, Hiroshi</creatorcontrib><collection>Istex</collection><collection>Springer Nature OA/Free Journals</collection><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohzeki, Jun-ichirou</au><au>Bergmann, Jan H</au><au>Kouprina, Natalay</au><au>Noskov, Vladimir N</au><au>Nakano, Megumi</au><au>Kimura, Hiroshi</au><au>Earnshaw, William C</au><au>Larionov, Vladimir</au><au>Masumoto, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breaking the HAC Barrier: Histone H3K9 acetyl/methyl balance regulates CENP-A assembly</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2012-05-16</date><risdate>2012</risdate><volume>31</volume><issue>10</issue><spage>2391</spage><epage>2402</epage><pages>2391-2402</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>The kinetochore is responsible for accurate chromosome segregation. However, the mechanism by which kinetochores assemble and are maintained remains unclear. Here we report that de novo CENP‐A assembly and kinetochore formation on human centromeric alphoid DNA arrays is regulated by a histone H3K9 acetyl/methyl balance. Tethering of histone acetyltransferases (HATs) to alphoid DNA arrays breaks a cell type‐specific barrier for de novo stable CENP‐A assembly and induces assembly of other kinetochore proteins at the ectopic alphoid site. Similar results are obtained following tethering of CENP‐A deposition factors hMis18α or HJURP. HAT tethering bypasses the need for hMis18α, but HJURP is still required for de novo kinetochore assembly. In contrast, H3K9 methylation following tethering of H3K9 tri‐methylase (Suv39h1) to the array prevents de novo CENP‐A assembly and kinetochore formation. CENP‐A arrays assembled de novo by this mechanism can form human artificial chromosomes (HACs) that are propagated indefinitely in human cells. Establishment of Human Artificial Chromosomes (HACs) depends on an interplay of H3 lysine 9 modifications at centromeres, providing insights into the pathways that control incorporation of the kinetochore‐specificing histone H3 variant CENP‐A.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>22473132</pmid><doi>10.1038/emboj.2012.82</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2012-05, Vol.31 (10), p.2391-2402
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3364751
source MEDLINE; Wiley Online Library Free Content; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry
subjects Acetylation
Autoantigens - metabolism
Cell cycle
CENP-A
Centromere Protein A
centromeres
Chromosomal Proteins, Non-Histone - metabolism
Chromosomes
Deoxyribonucleic acid
DNA
DNA - metabolism
EMBO06
EMBO09
epigenetic regulation
Epigenetics
heterochromatin
Histones - metabolism
Humans
Kinetochores - metabolism
Methylation
Molecular biology
Protein Multimerization
Protein Processing, Post-Translational
Proteins
title Breaking the HAC Barrier: Histone H3K9 acetyl/methyl balance regulates CENP-A assembly
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A16%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breaking%20the%20HAC%20Barrier:%20Histone%20H3K9%20acetyl/methyl%20balance%20regulates%20CENP-A%20assembly&rft.jtitle=The%20EMBO%20journal&rft.au=Ohzeki,%20Jun-ichirou&rft.date=2012-05-16&rft.volume=31&rft.issue=10&rft.spage=2391&rft.epage=2402&rft.pages=2391-2402&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1038/emboj.2012.82&rft_dat=%3Cproquest_pubme%3E1015093063%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1018694452&rft_id=info:pmid/22473132&rfr_iscdi=true