Diverse types of ganglion cell photoreceptors in the mammalian retina
Photoreceptors carry out the first step in vision by capturing light and transducing it into electrical signals. Rod and cone photoreceptors efficiently translate photon capture into electrical signals by light activation of opsin-type photopigments. Until recently, the central dogma was that, for m...
Gespeichert in:
Veröffentlicht in: | Progress in retinal and eye research 2012-07, Vol.31 (4), p.287-302 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 302 |
---|---|
container_issue | 4 |
container_start_page | 287 |
container_title | Progress in retinal and eye research |
container_volume | 31 |
creator | Sand, Andrea Schmidt, Tiffany M. Kofuji, Paulo |
description | Photoreceptors carry out the first step in vision by capturing light and transducing it into electrical signals. Rod and cone photoreceptors efficiently translate photon capture into electrical signals by light activation of opsin-type photopigments. Until recently, the central dogma was that, for mammals, all phototransduction occurred in rods and cones. However, the recent discovery of a novel photoreceptor type in the inner retina has fundamentally challenged this view. These retinal ganglion cells are intrinsically photosensitive and mediate a broad range of physiological responses such as photoentrainment of the circadian clock, light regulation of sleep, pupillary light reflex, and light suppression of melatonin secretion. Intrinsically photosensitive retinal ganglion cells express melanopsin, a novel opsin-based signaling mechanism reminiscent of that found in invertebrate rhabdomeric photoreceptors. Melanopsin-expressing retinal ganglion cells convey environmental irradiance information directly to brain centers such as the hypothalamus, preoptic nucleus, and lateral geniculate nucleus. Initial studies suggested that these melanopsin-expressing photoreceptors were an anatomically and functionally homogeneous population. However, over the past decade or so, it has become apparent that these photoreceptors are distinguishable as individual subtypes on the basis of their morphology, molecular markers, functional properties, and efferent projections. These results have provided a novel classification scheme with five melanopsin photoreceptor subtypes in the mammalian retina, each presumably with differential input and output properties. In this review, we summarize the evidence for the structural and functional diversity of melanopsin photoreceptor subtypes and current controversies in the field. |
doi_str_mv | 10.1016/j.preteyeres.2012.03.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3361613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1350946212000171</els_id><sourcerecordid>1034826303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c578t-a51f6c2a7fbb4c331aa14657a91897c5539c9bc284f3717d7c668f8c9c09fb9a3</originalsourceid><addsrcrecordid>eNqNkUtv1DAQxyNERR_wFZCPXJKO7fh1QYJSHlKlXuBsOd7JrleJHezsSvvtyXZLgRM9zUjzm_88_lVFKDQUqLzeNlPGGQ-YsTQMKGuANwD8RXVBteI1lVy8XHIuoDatZOfVZSlbAJBgxKvqnLFWg1Hiorr9FPaYC5L5MGEhqSdrF9dDSJF4HAYybdKcMnqcllBIiGTeIBndOLohuEiWNUJ0r6uz3g0F3zzGq-rH59vvN1_ru_sv324-3NVeKD3XTtBeeuZU33Wt55w6R1splDNUG-WF4MabzjPd9lxRtVJeSt1rbzyYvjOOX1XvT7rTrhtx5THO2Q12ymF0-WCTC_bfSgwbu057y7mkkvJF4N2jQE4_d1hmO4ZyPNRFTLtiKfBWM8nhOShVkjEq9ILqE-pzKiVj_7QRhSMn7db-McweDbPALTxMefv3RU-Nvx1agI8nAJe_7gNmW3zA6HEVFltmu0rh_1N-AUWcrcc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1017622158</pqid></control><display><type>article</type><title>Diverse types of ganglion cell photoreceptors in the mammalian retina</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Sand, Andrea ; Schmidt, Tiffany M. ; Kofuji, Paulo</creator><creatorcontrib>Sand, Andrea ; Schmidt, Tiffany M. ; Kofuji, Paulo</creatorcontrib><description>Photoreceptors carry out the first step in vision by capturing light and transducing it into electrical signals. Rod and cone photoreceptors efficiently translate photon capture into electrical signals by light activation of opsin-type photopigments. Until recently, the central dogma was that, for mammals, all phototransduction occurred in rods and cones. However, the recent discovery of a novel photoreceptor type in the inner retina has fundamentally challenged this view. These retinal ganglion cells are intrinsically photosensitive and mediate a broad range of physiological responses such as photoentrainment of the circadian clock, light regulation of sleep, pupillary light reflex, and light suppression of melatonin secretion. Intrinsically photosensitive retinal ganglion cells express melanopsin, a novel opsin-based signaling mechanism reminiscent of that found in invertebrate rhabdomeric photoreceptors. Melanopsin-expressing retinal ganglion cells convey environmental irradiance information directly to brain centers such as the hypothalamus, preoptic nucleus, and lateral geniculate nucleus. Initial studies suggested that these melanopsin-expressing photoreceptors were an anatomically and functionally homogeneous population. However, over the past decade or so, it has become apparent that these photoreceptors are distinguishable as individual subtypes on the basis of their morphology, molecular markers, functional properties, and efferent projections. These results have provided a novel classification scheme with five melanopsin photoreceptor subtypes in the mammalian retina, each presumably with differential input and output properties. In this review, we summarize the evidence for the structural and functional diversity of melanopsin photoreceptor subtypes and current controversies in the field.</description><identifier>ISSN: 1350-9462</identifier><identifier>EISSN: 1873-1635</identifier><identifier>DOI: 10.1016/j.preteyeres.2012.03.003</identifier><identifier>PMID: 22480975</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Brain ; Circadian entrainment ; Circadian Rhythm - physiology ; Circadian rhythms ; Cones ; Eye ; Humans ; Irradiance ; Light effects ; Melanopsin ; Melatonin ; Photons ; photopigments ; Photoreceptor Cells, Vertebrate - cytology ; Photoreceptor Cells, Vertebrate - physiology ; Photoreceptors ; Preoptic nucleus ; Pupillary light reflex ; Reflex, Pupillary - physiology ; Retina ; Retinal ganglion cells ; Retinal Ganglion Cells - cytology ; Retinal Ganglion Cells - physiology ; Retinal Photoreceptor Cell Inner Segment - physiology ; Reviews ; Rod Opsins - physiology ; Rods ; Secretion ; Sleep ; Structure-function relationships ; Vision</subject><ispartof>Progress in retinal and eye research, 2012-07, Vol.31 (4), p.287-302</ispartof><rights>2012 Elsevier Ltd</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><rights>2012 Elsevier Ltd. All rights reserved 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c578t-a51f6c2a7fbb4c331aa14657a91897c5539c9bc284f3717d7c668f8c9c09fb9a3</citedby><cites>FETCH-LOGICAL-c578t-a51f6c2a7fbb4c331aa14657a91897c5539c9bc284f3717d7c668f8c9c09fb9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.preteyeres.2012.03.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22480975$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sand, Andrea</creatorcontrib><creatorcontrib>Schmidt, Tiffany M.</creatorcontrib><creatorcontrib>Kofuji, Paulo</creatorcontrib><title>Diverse types of ganglion cell photoreceptors in the mammalian retina</title><title>Progress in retinal and eye research</title><addtitle>Prog Retin Eye Res</addtitle><description>Photoreceptors carry out the first step in vision by capturing light and transducing it into electrical signals. Rod and cone photoreceptors efficiently translate photon capture into electrical signals by light activation of opsin-type photopigments. Until recently, the central dogma was that, for mammals, all phototransduction occurred in rods and cones. However, the recent discovery of a novel photoreceptor type in the inner retina has fundamentally challenged this view. These retinal ganglion cells are intrinsically photosensitive and mediate a broad range of physiological responses such as photoentrainment of the circadian clock, light regulation of sleep, pupillary light reflex, and light suppression of melatonin secretion. Intrinsically photosensitive retinal ganglion cells express melanopsin, a novel opsin-based signaling mechanism reminiscent of that found in invertebrate rhabdomeric photoreceptors. Melanopsin-expressing retinal ganglion cells convey environmental irradiance information directly to brain centers such as the hypothalamus, preoptic nucleus, and lateral geniculate nucleus. Initial studies suggested that these melanopsin-expressing photoreceptors were an anatomically and functionally homogeneous population. However, over the past decade or so, it has become apparent that these photoreceptors are distinguishable as individual subtypes on the basis of their morphology, molecular markers, functional properties, and efferent projections. These results have provided a novel classification scheme with five melanopsin photoreceptor subtypes in the mammalian retina, each presumably with differential input and output properties. In this review, we summarize the evidence for the structural and functional diversity of melanopsin photoreceptor subtypes and current controversies in the field.</description><subject>Animals</subject><subject>Brain</subject><subject>Circadian entrainment</subject><subject>Circadian Rhythm - physiology</subject><subject>Circadian rhythms</subject><subject>Cones</subject><subject>Eye</subject><subject>Humans</subject><subject>Irradiance</subject><subject>Light effects</subject><subject>Melanopsin</subject><subject>Melatonin</subject><subject>Photons</subject><subject>photopigments</subject><subject>Photoreceptor Cells, Vertebrate - cytology</subject><subject>Photoreceptor Cells, Vertebrate - physiology</subject><subject>Photoreceptors</subject><subject>Preoptic nucleus</subject><subject>Pupillary light reflex</subject><subject>Reflex, Pupillary - physiology</subject><subject>Retina</subject><subject>Retinal ganglion cells</subject><subject>Retinal Ganglion Cells - cytology</subject><subject>Retinal Ganglion Cells - physiology</subject><subject>Retinal Photoreceptor Cell Inner Segment - physiology</subject><subject>Reviews</subject><subject>Rod Opsins - physiology</subject><subject>Rods</subject><subject>Secretion</subject><subject>Sleep</subject><subject>Structure-function relationships</subject><subject>Vision</subject><issn>1350-9462</issn><issn>1873-1635</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtv1DAQxyNERR_wFZCPXJKO7fh1QYJSHlKlXuBsOd7JrleJHezsSvvtyXZLgRM9zUjzm_88_lVFKDQUqLzeNlPGGQ-YsTQMKGuANwD8RXVBteI1lVy8XHIuoDatZOfVZSlbAJBgxKvqnLFWg1Hiorr9FPaYC5L5MGEhqSdrF9dDSJF4HAYybdKcMnqcllBIiGTeIBndOLohuEiWNUJ0r6uz3g0F3zzGq-rH59vvN1_ru_sv324-3NVeKD3XTtBeeuZU33Wt55w6R1splDNUG-WF4MabzjPd9lxRtVJeSt1rbzyYvjOOX1XvT7rTrhtx5THO2Q12ymF0-WCTC_bfSgwbu057y7mkkvJF4N2jQE4_d1hmO4ZyPNRFTLtiKfBWM8nhOShVkjEq9ILqE-pzKiVj_7QRhSMn7db-McweDbPALTxMefv3RU-Nvx1agI8nAJe_7gNmW3zA6HEVFltmu0rh_1N-AUWcrcc</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Sand, Andrea</creator><creator>Schmidt, Tiffany M.</creator><creator>Kofuji, Paulo</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20120701</creationdate><title>Diverse types of ganglion cell photoreceptors in the mammalian retina</title><author>Sand, Andrea ; Schmidt, Tiffany M. ; Kofuji, Paulo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c578t-a51f6c2a7fbb4c331aa14657a91897c5539c9bc284f3717d7c668f8c9c09fb9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Brain</topic><topic>Circadian entrainment</topic><topic>Circadian Rhythm - physiology</topic><topic>Circadian rhythms</topic><topic>Cones</topic><topic>Eye</topic><topic>Humans</topic><topic>Irradiance</topic><topic>Light effects</topic><topic>Melanopsin</topic><topic>Melatonin</topic><topic>Photons</topic><topic>photopigments</topic><topic>Photoreceptor Cells, Vertebrate - cytology</topic><topic>Photoreceptor Cells, Vertebrate - physiology</topic><topic>Photoreceptors</topic><topic>Preoptic nucleus</topic><topic>Pupillary light reflex</topic><topic>Reflex, Pupillary - physiology</topic><topic>Retina</topic><topic>Retinal ganglion cells</topic><topic>Retinal Ganglion Cells - cytology</topic><topic>Retinal Ganglion Cells - physiology</topic><topic>Retinal Photoreceptor Cell Inner Segment - physiology</topic><topic>Reviews</topic><topic>Rod Opsins - physiology</topic><topic>Rods</topic><topic>Secretion</topic><topic>Sleep</topic><topic>Structure-function relationships</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sand, Andrea</creatorcontrib><creatorcontrib>Schmidt, Tiffany M.</creatorcontrib><creatorcontrib>Kofuji, Paulo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Progress in retinal and eye research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sand, Andrea</au><au>Schmidt, Tiffany M.</au><au>Kofuji, Paulo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diverse types of ganglion cell photoreceptors in the mammalian retina</atitle><jtitle>Progress in retinal and eye research</jtitle><addtitle>Prog Retin Eye Res</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>31</volume><issue>4</issue><spage>287</spage><epage>302</epage><pages>287-302</pages><issn>1350-9462</issn><eissn>1873-1635</eissn><abstract>Photoreceptors carry out the first step in vision by capturing light and transducing it into electrical signals. Rod and cone photoreceptors efficiently translate photon capture into electrical signals by light activation of opsin-type photopigments. Until recently, the central dogma was that, for mammals, all phototransduction occurred in rods and cones. However, the recent discovery of a novel photoreceptor type in the inner retina has fundamentally challenged this view. These retinal ganglion cells are intrinsically photosensitive and mediate a broad range of physiological responses such as photoentrainment of the circadian clock, light regulation of sleep, pupillary light reflex, and light suppression of melatonin secretion. Intrinsically photosensitive retinal ganglion cells express melanopsin, a novel opsin-based signaling mechanism reminiscent of that found in invertebrate rhabdomeric photoreceptors. Melanopsin-expressing retinal ganglion cells convey environmental irradiance information directly to brain centers such as the hypothalamus, preoptic nucleus, and lateral geniculate nucleus. Initial studies suggested that these melanopsin-expressing photoreceptors were an anatomically and functionally homogeneous population. However, over the past decade or so, it has become apparent that these photoreceptors are distinguishable as individual subtypes on the basis of their morphology, molecular markers, functional properties, and efferent projections. These results have provided a novel classification scheme with five melanopsin photoreceptor subtypes in the mammalian retina, each presumably with differential input and output properties. In this review, we summarize the evidence for the structural and functional diversity of melanopsin photoreceptor subtypes and current controversies in the field.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>22480975</pmid><doi>10.1016/j.preteyeres.2012.03.003</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-9462 |
ispartof | Progress in retinal and eye research, 2012-07, Vol.31 (4), p.287-302 |
issn | 1350-9462 1873-1635 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3361613 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Animals Brain Circadian entrainment Circadian Rhythm - physiology Circadian rhythms Cones Eye Humans Irradiance Light effects Melanopsin Melatonin Photons photopigments Photoreceptor Cells, Vertebrate - cytology Photoreceptor Cells, Vertebrate - physiology Photoreceptors Preoptic nucleus Pupillary light reflex Reflex, Pupillary - physiology Retina Retinal ganglion cells Retinal Ganglion Cells - cytology Retinal Ganglion Cells - physiology Retinal Photoreceptor Cell Inner Segment - physiology Reviews Rod Opsins - physiology Rods Secretion Sleep Structure-function relationships Vision |
title | Diverse types of ganglion cell photoreceptors in the mammalian retina |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T15%3A03%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diverse%20types%20of%20ganglion%20cell%20photoreceptors%20in%20the%20mammalian%20retina&rft.jtitle=Progress%20in%20retinal%20and%20eye%20research&rft.au=Sand,%20Andrea&rft.date=2012-07-01&rft.volume=31&rft.issue=4&rft.spage=287&rft.epage=302&rft.pages=287-302&rft.issn=1350-9462&rft.eissn=1873-1635&rft_id=info:doi/10.1016/j.preteyeres.2012.03.003&rft_dat=%3Cproquest_pubme%3E1034826303%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1017622158&rft_id=info:pmid/22480975&rft_els_id=S1350946212000171&rfr_iscdi=true |