Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade
Plants must effectively defend against biotic and abiotic stresses to survive in nature. However, this defense is costly and is often accompanied by significant growth inhibition. How plants coordinate the fluctuating growth-defense dynamics is not well understood and remains a fundamental question....
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2012-05, Vol.109 (19), p.E1192-E1200 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E1200 |
---|---|
container_issue | 19 |
container_start_page | E1192 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 109 |
creator | Yang, Dong-Lei Yao, Jian Mei, Chuan-Sheng Tong, Xiao-Hong Zeng, Long-Jun Li, Qun Xiao, Lang-Tao Sun, Tai-ping Li, Jigang Deng, Xing-Wang Lee, Chin Mei Thomashow, Michael F Yang, Yinong He, Zuhua He, Sheng Yang |
description | Plants must effectively defend against biotic and abiotic stresses to survive in nature. However, this defense is costly and is often accompanied by significant growth inhibition. How plants coordinate the fluctuating growth-defense dynamics is not well understood and remains a fundamental question. Jasmonate (JA) and gibberellic acid (GA) are important plant hormones that mediate defense and growth, respectively. Binding of bioactive JA or GA ligands to cognate receptors leads to proteasome-dependent degradation of specific transcriptional repressors (the JAZ or DELLA family of proteins), which, at the resting state, represses cognate transcription factors involved in defense (e.g., MYCs) or growth [e.g. phytochrome interacting factors (PIFs)]. In this study, we found that the coi1 JA receptor mutants of rice (a domesticated monocot crop) and Arabidopsis (a model dicot plant) both exhibit hallmark phenotypes of GA-hypersensitive mutants. JA delays GA-mediated DELLA protein degradation, and the della mutant is less sensitive to JA for growth inhibition. Overexpression of a selected group of JAZ repressors in Arabidopsis plants partially phenocopies GA-associated phenotypes of the coi1 mutant, and JAZ9 inhibits RGA (a DELLA protein) interaction with transcription factor PIF3. Importantly, the pif quadruple (pifq) mutant no longer responds to JA-induced growth inhibition, and overexpression of PIF3 could partially overcome JA-induced growth inhibition. Thus, a molecular cascade involving the COI1–JAZ–DELLA–PIF signaling module, by which angiosperm plants prioritize JA-mediated defense over growth, has been elucidated. |
doi_str_mv | 10.1073/pnas.1201616109 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3358897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1999956334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-b5c380691bef7fc7620699016c7d0cfac4bf2de96f95f595a386f8e4a970242b3</originalsourceid><addsrcrecordid>eNpdkl1vVCEQhonR2LV67Z2SeOPNaQc4X9yYNE39SJpoor0mHHY4y-YsrHC2Tf31zmbXVoWECfDMy7wZGHst4ExAp8630ZYzIUG0NEE_YQtaRdXWGp6yBYDsqr6W9Ql7UcoaAHTTw3N2ImUjterbBQvfJhtnvkp5kyLytS0U7Yx8m0PKYQ6_sPAleowFebrFzMec7uYVH-55iDNmjznEkd8FOhvDMGDGaQqRlzBGO-2vnC3OLvEle-btVPDVMZ6ym49XPy4_V9dfP325vLiuXANqrobGqR5aLQb0nXddK2mjyaDrluC8dfXg5RJ163XjG91YsuF7rK3uQNZyUKfsw0F3uxs2uHQY52wnQ342Nt-bZIP59yaGlRnTrVGq6XvdkcD7o0BOP3dYZrMJxZErGzHtihGaRtMqVRP67j90nXaZfBMFQgqAWiiizg-Uy6mUjP6hGAFm30azb6N5bCNlvPnbwwP_p28E8COwz3yU01SduRJCS0LeHhBvk7FjDsXcfKcnavoGvejaVv0G5YivOw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1012100413</pqid></control><display><type>article</type><title>Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Yang, Dong-Lei ; Yao, Jian ; Mei, Chuan-Sheng ; Tong, Xiao-Hong ; Zeng, Long-Jun ; Li, Qun ; Xiao, Lang-Tao ; Sun, Tai-ping ; Li, Jigang ; Deng, Xing-Wang ; Lee, Chin Mei ; Thomashow, Michael F ; Yang, Yinong ; He, Zuhua ; He, Sheng Yang</creator><creatorcontrib>Yang, Dong-Lei ; Yao, Jian ; Mei, Chuan-Sheng ; Tong, Xiao-Hong ; Zeng, Long-Jun ; Li, Qun ; Xiao, Lang-Tao ; Sun, Tai-ping ; Li, Jigang ; Deng, Xing-Wang ; Lee, Chin Mei ; Thomashow, Michael F ; Yang, Yinong ; He, Zuhua ; He, Sheng Yang</creatorcontrib><description>Plants must effectively defend against biotic and abiotic stresses to survive in nature. However, this defense is costly and is often accompanied by significant growth inhibition. How plants coordinate the fluctuating growth-defense dynamics is not well understood and remains a fundamental question. Jasmonate (JA) and gibberellic acid (GA) are important plant hormones that mediate defense and growth, respectively. Binding of bioactive JA or GA ligands to cognate receptors leads to proteasome-dependent degradation of specific transcriptional repressors (the JAZ or DELLA family of proteins), which, at the resting state, represses cognate transcription factors involved in defense (e.g., MYCs) or growth [e.g. phytochrome interacting factors (PIFs)]. In this study, we found that the coi1 JA receptor mutants of rice (a domesticated monocot crop) and Arabidopsis (a model dicot plant) both exhibit hallmark phenotypes of GA-hypersensitive mutants. JA delays GA-mediated DELLA protein degradation, and the della mutant is less sensitive to JA for growth inhibition. Overexpression of a selected group of JAZ repressors in Arabidopsis plants partially phenocopies GA-associated phenotypes of the coi1 mutant, and JAZ9 inhibits RGA (a DELLA protein) interaction with transcription factor PIF3. Importantly, the pif quadruple (pifq) mutant no longer responds to JA-induced growth inhibition, and overexpression of PIF3 could partially overcome JA-induced growth inhibition. Thus, a molecular cascade involving the COI1–JAZ–DELLA–PIF signaling module, by which angiosperm plants prioritize JA-mediated defense over growth, has been elucidated.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1201616109</identifier><identifier>PMID: 22529386</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - growth & development ; Arabidopsis - metabolism ; Arabidopsis Proteins ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism ; Basic Helix-Loop-Helix Transcription Factors ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Binding sites ; Biological Sciences ; Cyclopentanes ; Cyclopentanes - metabolism ; Cyclopentanes - pharmacology ; DNA-Binding Proteins ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; drug effects ; F-Box Proteins ; F-Box Proteins - genetics ; F-Box Proteins - metabolism ; Flowers & plants ; Gene Expression Regulation, Plant ; Gene Expression Regulation, Plant - drug effects ; gene overexpression ; genetics ; gibberellic acid ; Gibberellins ; Gibberellins - metabolism ; Gibberellins - pharmacology ; growth & development ; growth retardation ; Hormones ; jasmonic acid ; Liliopsida ; metabolism ; mutants ; Mutation ; Oryza ; Oryza - genetics ; Oryza - growth & development ; Oryza - metabolism ; Oxylipins ; Oxylipins - metabolism ; Oxylipins - pharmacology ; pharmacology ; phenotype ; physiology ; Plant Development ; Plant growth ; Plant Growth Regulators ; Plant Growth Regulators - metabolism ; Plant Growth Regulators - pharmacology ; Plant Proteins ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants ; Plants - genetics ; Plants - metabolism ; PNAS Plus ; Protein Binding ; protein degradation ; Proteins ; Proteolysis ; Proteolysis - drug effects ; receptors ; Repressor Proteins ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; rice ; RNA Interference ; Seedlings ; Seedlings - drug effects ; Seedlings - genetics ; Seedlings - metabolism ; Signal Transduction ; Signal Transduction - drug effects ; Signal Transduction - genetics ; Signal Transduction - physiology ; transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Two-Hybrid System Techniques</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-05, Vol.109 (19), p.E1192-E1200</ispartof><rights>Copyright National Academy of Sciences May 8, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-b5c380691bef7fc7620699016c7d0cfac4bf2de96f95f595a386f8e4a970242b3</citedby><cites>FETCH-LOGICAL-c503t-b5c380691bef7fc7620699016c7d0cfac4bf2de96f95f595a386f8e4a970242b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/19.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358897/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358897/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22529386$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Dong-Lei</creatorcontrib><creatorcontrib>Yao, Jian</creatorcontrib><creatorcontrib>Mei, Chuan-Sheng</creatorcontrib><creatorcontrib>Tong, Xiao-Hong</creatorcontrib><creatorcontrib>Zeng, Long-Jun</creatorcontrib><creatorcontrib>Li, Qun</creatorcontrib><creatorcontrib>Xiao, Lang-Tao</creatorcontrib><creatorcontrib>Sun, Tai-ping</creatorcontrib><creatorcontrib>Li, Jigang</creatorcontrib><creatorcontrib>Deng, Xing-Wang</creatorcontrib><creatorcontrib>Lee, Chin Mei</creatorcontrib><creatorcontrib>Thomashow, Michael F</creatorcontrib><creatorcontrib>Yang, Yinong</creatorcontrib><creatorcontrib>He, Zuhua</creatorcontrib><creatorcontrib>He, Sheng Yang</creatorcontrib><title>Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Plants must effectively defend against biotic and abiotic stresses to survive in nature. However, this defense is costly and is often accompanied by significant growth inhibition. How plants coordinate the fluctuating growth-defense dynamics is not well understood and remains a fundamental question. Jasmonate (JA) and gibberellic acid (GA) are important plant hormones that mediate defense and growth, respectively. Binding of bioactive JA or GA ligands to cognate receptors leads to proteasome-dependent degradation of specific transcriptional repressors (the JAZ or DELLA family of proteins), which, at the resting state, represses cognate transcription factors involved in defense (e.g., MYCs) or growth [e.g. phytochrome interacting factors (PIFs)]. In this study, we found that the coi1 JA receptor mutants of rice (a domesticated monocot crop) and Arabidopsis (a model dicot plant) both exhibit hallmark phenotypes of GA-hypersensitive mutants. JA delays GA-mediated DELLA protein degradation, and the della mutant is less sensitive to JA for growth inhibition. Overexpression of a selected group of JAZ repressors in Arabidopsis plants partially phenocopies GA-associated phenotypes of the coi1 mutant, and JAZ9 inhibits RGA (a DELLA protein) interaction with transcription factor PIF3. Importantly, the pif quadruple (pifq) mutant no longer responds to JA-induced growth inhibition, and overexpression of PIF3 could partially overcome JA-induced growth inhibition. Thus, a molecular cascade involving the COI1–JAZ–DELLA–PIF signaling module, by which angiosperm plants prioritize JA-mediated defense over growth, has been elucidated.</description><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth & development</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</subject><subject>Basic Helix-Loop-Helix Transcription Factors</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Cyclopentanes</subject><subject>Cyclopentanes - metabolism</subject><subject>Cyclopentanes - pharmacology</subject><subject>DNA-Binding Proteins</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>drug effects</subject><subject>F-Box Proteins</subject><subject>F-Box Proteins - genetics</subject><subject>F-Box Proteins - metabolism</subject><subject>Flowers & plants</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>gene overexpression</subject><subject>genetics</subject><subject>gibberellic acid</subject><subject>Gibberellins</subject><subject>Gibberellins - metabolism</subject><subject>Gibberellins - pharmacology</subject><subject>growth & development</subject><subject>growth retardation</subject><subject>Hormones</subject><subject>jasmonic acid</subject><subject>Liliopsida</subject><subject>metabolism</subject><subject>mutants</subject><subject>Mutation</subject><subject>Oryza</subject><subject>Oryza - genetics</subject><subject>Oryza - growth & development</subject><subject>Oryza - metabolism</subject><subject>Oxylipins</subject><subject>Oxylipins - metabolism</subject><subject>Oxylipins - pharmacology</subject><subject>pharmacology</subject><subject>phenotype</subject><subject>physiology</subject><subject>Plant Development</subject><subject>Plant growth</subject><subject>Plant Growth Regulators</subject><subject>Plant Growth Regulators - metabolism</subject><subject>Plant Growth Regulators - pharmacology</subject><subject>Plant Proteins</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants</subject><subject>Plants - genetics</subject><subject>Plants - metabolism</subject><subject>PNAS Plus</subject><subject>Protein Binding</subject><subject>protein degradation</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Proteolysis - drug effects</subject><subject>receptors</subject><subject>Repressor Proteins</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>rice</subject><subject>RNA Interference</subject><subject>Seedlings</subject><subject>Seedlings - drug effects</subject><subject>Seedlings - genetics</subject><subject>Seedlings - metabolism</subject><subject>Signal Transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - physiology</subject><subject>transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Two-Hybrid System Techniques</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkl1vVCEQhonR2LV67Z2SeOPNaQc4X9yYNE39SJpoor0mHHY4y-YsrHC2Tf31zmbXVoWECfDMy7wZGHst4ExAp8630ZYzIUG0NEE_YQtaRdXWGp6yBYDsqr6W9Ql7UcoaAHTTw3N2ImUjterbBQvfJhtnvkp5kyLytS0U7Yx8m0PKYQ6_sPAleowFebrFzMec7uYVH-55iDNmjznEkd8FOhvDMGDGaQqRlzBGO-2vnC3OLvEle-btVPDVMZ6ym49XPy4_V9dfP325vLiuXANqrobGqR5aLQb0nXddK2mjyaDrluC8dfXg5RJ163XjG91YsuF7rK3uQNZyUKfsw0F3uxs2uHQY52wnQ342Nt-bZIP59yaGlRnTrVGq6XvdkcD7o0BOP3dYZrMJxZErGzHtihGaRtMqVRP67j90nXaZfBMFQgqAWiiizg-Uy6mUjP6hGAFm30azb6N5bCNlvPnbwwP_p28E8COwz3yU01SduRJCS0LeHhBvk7FjDsXcfKcnavoGvejaVv0G5YivOw</recordid><startdate>20120508</startdate><enddate>20120508</enddate><creator>Yang, Dong-Lei</creator><creator>Yao, Jian</creator><creator>Mei, Chuan-Sheng</creator><creator>Tong, Xiao-Hong</creator><creator>Zeng, Long-Jun</creator><creator>Li, Qun</creator><creator>Xiao, Lang-Tao</creator><creator>Sun, Tai-ping</creator><creator>Li, Jigang</creator><creator>Deng, Xing-Wang</creator><creator>Lee, Chin Mei</creator><creator>Thomashow, Michael F</creator><creator>Yang, Yinong</creator><creator>He, Zuhua</creator><creator>He, Sheng Yang</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20120508</creationdate><title>Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade</title><author>Yang, Dong-Lei ; Yao, Jian ; Mei, Chuan-Sheng ; Tong, Xiao-Hong ; Zeng, Long-Jun ; Li, Qun ; Xiao, Lang-Tao ; Sun, Tai-ping ; Li, Jigang ; Deng, Xing-Wang ; Lee, Chin Mei ; Thomashow, Michael F ; Yang, Yinong ; He, Zuhua ; He, Sheng Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-b5c380691bef7fc7620699016c7d0cfac4bf2de96f95f595a386f8e4a970242b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth & development</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</topic><topic>Basic Helix-Loop-Helix Transcription Factors</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Cyclopentanes</topic><topic>Cyclopentanes - metabolism</topic><topic>Cyclopentanes - pharmacology</topic><topic>DNA-Binding Proteins</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>drug effects</topic><topic>F-Box Proteins</topic><topic>F-Box Proteins - genetics</topic><topic>F-Box Proteins - metabolism</topic><topic>Flowers & plants</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>gene overexpression</topic><topic>genetics</topic><topic>gibberellic acid</topic><topic>Gibberellins</topic><topic>Gibberellins - metabolism</topic><topic>Gibberellins - pharmacology</topic><topic>growth & development</topic><topic>growth retardation</topic><topic>Hormones</topic><topic>jasmonic acid</topic><topic>Liliopsida</topic><topic>metabolism</topic><topic>mutants</topic><topic>Mutation</topic><topic>Oryza</topic><topic>Oryza - genetics</topic><topic>Oryza - growth & development</topic><topic>Oryza - metabolism</topic><topic>Oxylipins</topic><topic>Oxylipins - metabolism</topic><topic>Oxylipins - pharmacology</topic><topic>pharmacology</topic><topic>phenotype</topic><topic>physiology</topic><topic>Plant Development</topic><topic>Plant growth</topic><topic>Plant Growth Regulators</topic><topic>Plant Growth Regulators - metabolism</topic><topic>Plant Growth Regulators - pharmacology</topic><topic>Plant Proteins</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants</topic><topic>Plants - genetics</topic><topic>Plants - metabolism</topic><topic>PNAS Plus</topic><topic>Protein Binding</topic><topic>protein degradation</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Proteolysis - drug effects</topic><topic>receptors</topic><topic>Repressor Proteins</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>rice</topic><topic>RNA Interference</topic><topic>Seedlings</topic><topic>Seedlings - drug effects</topic><topic>Seedlings - genetics</topic><topic>Seedlings - metabolism</topic><topic>Signal Transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - physiology</topic><topic>transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Two-Hybrid System Techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Dong-Lei</creatorcontrib><creatorcontrib>Yao, Jian</creatorcontrib><creatorcontrib>Mei, Chuan-Sheng</creatorcontrib><creatorcontrib>Tong, Xiao-Hong</creatorcontrib><creatorcontrib>Zeng, Long-Jun</creatorcontrib><creatorcontrib>Li, Qun</creatorcontrib><creatorcontrib>Xiao, Lang-Tao</creatorcontrib><creatorcontrib>Sun, Tai-ping</creatorcontrib><creatorcontrib>Li, Jigang</creatorcontrib><creatorcontrib>Deng, Xing-Wang</creatorcontrib><creatorcontrib>Lee, Chin Mei</creatorcontrib><creatorcontrib>Thomashow, Michael F</creatorcontrib><creatorcontrib>Yang, Yinong</creatorcontrib><creatorcontrib>He, Zuhua</creatorcontrib><creatorcontrib>He, Sheng Yang</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Dong-Lei</au><au>Yao, Jian</au><au>Mei, Chuan-Sheng</au><au>Tong, Xiao-Hong</au><au>Zeng, Long-Jun</au><au>Li, Qun</au><au>Xiao, Lang-Tao</au><au>Sun, Tai-ping</au><au>Li, Jigang</au><au>Deng, Xing-Wang</au><au>Lee, Chin Mei</au><au>Thomashow, Michael F</au><au>Yang, Yinong</au><au>He, Zuhua</au><au>He, Sheng Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-05-08</date><risdate>2012</risdate><volume>109</volume><issue>19</issue><spage>E1192</spage><epage>E1200</epage><pages>E1192-E1200</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Plants must effectively defend against biotic and abiotic stresses to survive in nature. However, this defense is costly and is often accompanied by significant growth inhibition. How plants coordinate the fluctuating growth-defense dynamics is not well understood and remains a fundamental question. Jasmonate (JA) and gibberellic acid (GA) are important plant hormones that mediate defense and growth, respectively. Binding of bioactive JA or GA ligands to cognate receptors leads to proteasome-dependent degradation of specific transcriptional repressors (the JAZ or DELLA family of proteins), which, at the resting state, represses cognate transcription factors involved in defense (e.g., MYCs) or growth [e.g. phytochrome interacting factors (PIFs)]. In this study, we found that the coi1 JA receptor mutants of rice (a domesticated monocot crop) and Arabidopsis (a model dicot plant) both exhibit hallmark phenotypes of GA-hypersensitive mutants. JA delays GA-mediated DELLA protein degradation, and the della mutant is less sensitive to JA for growth inhibition. Overexpression of a selected group of JAZ repressors in Arabidopsis plants partially phenocopies GA-associated phenotypes of the coi1 mutant, and JAZ9 inhibits RGA (a DELLA protein) interaction with transcription factor PIF3. Importantly, the pif quadruple (pifq) mutant no longer responds to JA-induced growth inhibition, and overexpression of PIF3 could partially overcome JA-induced growth inhibition. Thus, a molecular cascade involving the COI1–JAZ–DELLA–PIF signaling module, by which angiosperm plants prioritize JA-mediated defense over growth, has been elucidated.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22529386</pmid><doi>10.1073/pnas.1201616109</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2012-05, Vol.109 (19), p.E1192-E1200 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3358897 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Arabidopsis Arabidopsis - genetics Arabidopsis - growth & development Arabidopsis - metabolism Arabidopsis Proteins Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Basic Helix-Loop-Helix Leucine Zipper Transcription Factors Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism Basic Helix-Loop-Helix Transcription Factors Basic Helix-Loop-Helix Transcription Factors - genetics Basic Helix-Loop-Helix Transcription Factors - metabolism Binding sites Biological Sciences Cyclopentanes Cyclopentanes - metabolism Cyclopentanes - pharmacology DNA-Binding Proteins DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism drug effects F-Box Proteins F-Box Proteins - genetics F-Box Proteins - metabolism Flowers & plants Gene Expression Regulation, Plant Gene Expression Regulation, Plant - drug effects gene overexpression genetics gibberellic acid Gibberellins Gibberellins - metabolism Gibberellins - pharmacology growth & development growth retardation Hormones jasmonic acid Liliopsida metabolism mutants Mutation Oryza Oryza - genetics Oryza - growth & development Oryza - metabolism Oxylipins Oxylipins - metabolism Oxylipins - pharmacology pharmacology phenotype physiology Plant Development Plant growth Plant Growth Regulators Plant Growth Regulators - metabolism Plant Growth Regulators - pharmacology Plant Proteins Plant Proteins - genetics Plant Proteins - metabolism Plants Plants - genetics Plants - metabolism PNAS Plus Protein Binding protein degradation Proteins Proteolysis Proteolysis - drug effects receptors Repressor Proteins Repressor Proteins - genetics Repressor Proteins - metabolism Reverse Transcriptase Polymerase Chain Reaction rice RNA Interference Seedlings Seedlings - drug effects Seedlings - genetics Seedlings - metabolism Signal Transduction Signal Transduction - drug effects Signal Transduction - genetics Signal Transduction - physiology transcription factors Transcription Factors - genetics Transcription Factors - metabolism Two-Hybrid System Techniques |
title | Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A42%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plant%20hormone%20jasmonate%20prioritizes%20defense%20over%20growth%20by%20interfering%20with%20gibberellin%20signaling%20cascade&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Yang,%20Dong-Lei&rft.date=2012-05-08&rft.volume=109&rft.issue=19&rft.spage=E1192&rft.epage=E1200&rft.pages=E1192-E1200&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1201616109&rft_dat=%3Cproquest_pubme%3E1999956334%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1012100413&rft_id=info:pmid/22529386&rfr_iscdi=true |