A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal

Enhanced biological phosphorus removal (EBPR) is widely used for removal of phosphorus from wastewater. In this study, a metagenome (18.2 Gb) was generated using Illumina sequencing from a full-scale EBPR plant to study the community structure and genetic potential. Quantitative fluorescence in situ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The ISME Journal 2012-06, Vol.6 (6), p.1094-1106
Hauptverfasser: Albertsen, Mads, Hansen, Lea Benedicte Skov, Saunders, Aaron Marc, Nielsen, Per Halkjær, Nielsen, Kåre Lehmann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1106
container_issue 6
container_start_page 1094
container_title The ISME Journal
container_volume 6
creator Albertsen, Mads
Hansen, Lea Benedicte Skov
Saunders, Aaron Marc
Nielsen, Per Halkjær
Nielsen, Kåre Lehmann
description Enhanced biological phosphorus removal (EBPR) is widely used for removal of phosphorus from wastewater. In this study, a metagenome (18.2 Gb) was generated using Illumina sequencing from a full-scale EBPR plant to study the community structure and genetic potential. Quantitative fluorescence in situ hybridization (qFISH) was applied as an independent method to evaluate the community structure. The results were in qualitative agreement, but a DNA extraction bias against gram positive bacteria using standard extraction protocols was identified, which would not have been identified without the use of qFISH. The genetic potential for community function showed enrichment of genes involved in phosphate metabolism and biofilm formation, reflecting the selective pressure of the EBPR process. Most contigs in the assembled metagenome had low similarity to genes from currently sequenced genomes, underlining the need for more reference genomes of key EBPR species. Only the genome of ‘ Candidatus Accumulibacter’, a genus of phosphorus-removing organisms, was closely enough related to the species present in the metagenome to allow for detailed investigations. Accumulibacter accounted for only 4.8% of all bacteria by qFISH, but the depth of sequencing enabled detailed insight into their microdiversity in the full-scale plant. Only 15% of the reads matching Accumulibacter had a high similarity (>95%) to the sequenced Accumulibacter clade IIA strain UW-1 genome, indicating the presence of some microdiversity. The differences in gene complement between the Accumulibacter clades were limited to genes for extracellular polymeric substances and phage-related genes, suggesting a selective pressure from phages on the Accumulibacter diversity.
doi_str_mv 10.1038/ismej.2011.176
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3358022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1028021413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-2221f85bc4d98468a16d90a37c3e6699a0ffff6688f942608e524c9a842764ce3</originalsourceid><addsrcrecordid>eNptkctr3DAQxkVpaNK01x6LoJdevNHDluRLIYS-IJBLehZaeezVosdWsgP730fbTZe0RDBIML_5NDMfQh8oWVHC1ZUrAbYrRihdUSleoQsqO9pILsnr01uwc_S2lC0hnRRCvkHnjFFJWtZdoOEaB5jNBDEFwGnEBo-L902xxgMOzua0dsZjm0JYopv32Jqc9y5OOC0zhrgx0cKA1y75NLlahXebVGrkpeAMIT0Y_w6djcYXeP90X6Jf377e3_xobu--_7y5vm1s18m5YbWtUXVr2w69aoUyVAw9MVxaDkL0vSFjPUIoNfYtE0RBx1rbG9UyKVoL_BJ9OerulnWAwUKcs_F6l10wea-TcfrfTHQbPaUHzXmnCGNV4POTQE6_FyizDq5Y8N5ESEvRlLDK0Zbyin76D92mJcc6XqUoF4IxchBcHam6x1IyjKdmKNEHA_UfA_XBQF0NrAUfn49wwv86VoGrI1BqKk6Qn__7ouQjnBGoeQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1013662202</pqid></control><display><type>article</type><title>A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal</title><source>PubMed Central Free</source><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Albertsen, Mads ; Hansen, Lea Benedicte Skov ; Saunders, Aaron Marc ; Nielsen, Per Halkjær ; Nielsen, Kåre Lehmann</creator><creatorcontrib>Albertsen, Mads ; Hansen, Lea Benedicte Skov ; Saunders, Aaron Marc ; Nielsen, Per Halkjær ; Nielsen, Kåre Lehmann</creatorcontrib><description>Enhanced biological phosphorus removal (EBPR) is widely used for removal of phosphorus from wastewater. In this study, a metagenome (18.2 Gb) was generated using Illumina sequencing from a full-scale EBPR plant to study the community structure and genetic potential. Quantitative fluorescence in situ hybridization (qFISH) was applied as an independent method to evaluate the community structure. The results were in qualitative agreement, but a DNA extraction bias against gram positive bacteria using standard extraction protocols was identified, which would not have been identified without the use of qFISH. The genetic potential for community function showed enrichment of genes involved in phosphate metabolism and biofilm formation, reflecting the selective pressure of the EBPR process. Most contigs in the assembled metagenome had low similarity to genes from currently sequenced genomes, underlining the need for more reference genomes of key EBPR species. Only the genome of ‘ Candidatus Accumulibacter’, a genus of phosphorus-removing organisms, was closely enough related to the species present in the metagenome to allow for detailed investigations. Accumulibacter accounted for only 4.8% of all bacteria by qFISH, but the depth of sequencing enabled detailed insight into their microdiversity in the full-scale plant. Only 15% of the reads matching Accumulibacter had a high similarity (&gt;95%) to the sequenced Accumulibacter clade IIA strain UW-1 genome, indicating the presence of some microdiversity. The differences in gene complement between the Accumulibacter clades were limited to genes for extracellular polymeric substances and phage-related genes, suggesting a selective pressure from phages on the Accumulibacter diversity.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/ismej.2011.176</identifier><identifier>PMID: 22170425</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Bacteria - classification ; Bacteria - genetics ; Bacteria - metabolism ; Biofilms ; Biomedical and Life Sciences ; Community structure ; Deoxyribonucleic acid ; DNA ; DNA, Bacterial - genetics ; Ecology ; Evolutionary Biology ; Fluorescence ; Fluorescence in situ hybridization ; Genomes ; Gram-positive bacteria ; Hybridization ; In Situ Hybridization, Fluorescence ; Life Sciences ; Metabolism ; Metagenome ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Original ; original-article ; Phages ; Phosphate ; Phosphorus ; Phosphorus - metabolism ; Phosphorus removal ; Plant communities ; RNA, Ribosomal, 16S - genetics ; RNA, Ribosomal, 16S - metabolism ; Sequence Analysis, DNA ; Sewage - microbiology ; Waste Disposal, Fluid ; Waste water ; Waste Water - microbiology</subject><ispartof>The ISME Journal, 2012-06, Vol.6 (6), p.1094-1106</ispartof><rights>International Society for Microbial Ecology 2012</rights><rights>Copyright Nature Publishing Group Jun 2012</rights><rights>Copyright © 2012 International Society for Microbial Ecology 2012 International Society for Microbial Ecology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-2221f85bc4d98468a16d90a37c3e6699a0ffff6688f942608e524c9a842764ce3</citedby><cites>FETCH-LOGICAL-c557t-2221f85bc4d98468a16d90a37c3e6699a0ffff6688f942608e524c9a842764ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358022/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358022/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22170425$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Albertsen, Mads</creatorcontrib><creatorcontrib>Hansen, Lea Benedicte Skov</creatorcontrib><creatorcontrib>Saunders, Aaron Marc</creatorcontrib><creatorcontrib>Nielsen, Per Halkjær</creatorcontrib><creatorcontrib>Nielsen, Kåre Lehmann</creatorcontrib><title>A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>Enhanced biological phosphorus removal (EBPR) is widely used for removal of phosphorus from wastewater. In this study, a metagenome (18.2 Gb) was generated using Illumina sequencing from a full-scale EBPR plant to study the community structure and genetic potential. Quantitative fluorescence in situ hybridization (qFISH) was applied as an independent method to evaluate the community structure. The results were in qualitative agreement, but a DNA extraction bias against gram positive bacteria using standard extraction protocols was identified, which would not have been identified without the use of qFISH. The genetic potential for community function showed enrichment of genes involved in phosphate metabolism and biofilm formation, reflecting the selective pressure of the EBPR process. Most contigs in the assembled metagenome had low similarity to genes from currently sequenced genomes, underlining the need for more reference genomes of key EBPR species. Only the genome of ‘ Candidatus Accumulibacter’, a genus of phosphorus-removing organisms, was closely enough related to the species present in the metagenome to allow for detailed investigations. Accumulibacter accounted for only 4.8% of all bacteria by qFISH, but the depth of sequencing enabled detailed insight into their microdiversity in the full-scale plant. Only 15% of the reads matching Accumulibacter had a high similarity (&gt;95%) to the sequenced Accumulibacter clade IIA strain UW-1 genome, indicating the presence of some microdiversity. The differences in gene complement between the Accumulibacter clades were limited to genes for extracellular polymeric substances and phage-related genes, suggesting a selective pressure from phages on the Accumulibacter diversity.</description><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Biofilms</subject><subject>Biomedical and Life Sciences</subject><subject>Community structure</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA, Bacterial - genetics</subject><subject>Ecology</subject><subject>Evolutionary Biology</subject><subject>Fluorescence</subject><subject>Fluorescence in situ hybridization</subject><subject>Genomes</subject><subject>Gram-positive bacteria</subject><subject>Hybridization</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Metagenome</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Original</subject><subject>original-article</subject><subject>Phages</subject><subject>Phosphate</subject><subject>Phosphorus</subject><subject>Phosphorus - metabolism</subject><subject>Phosphorus removal</subject><subject>Plant communities</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>RNA, Ribosomal, 16S - metabolism</subject><subject>Sequence Analysis, DNA</subject><subject>Sewage - microbiology</subject><subject>Waste Disposal, Fluid</subject><subject>Waste water</subject><subject>Waste Water - microbiology</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkctr3DAQxkVpaNK01x6LoJdevNHDluRLIYS-IJBLehZaeezVosdWsgP730fbTZe0RDBIML_5NDMfQh8oWVHC1ZUrAbYrRihdUSleoQsqO9pILsnr01uwc_S2lC0hnRRCvkHnjFFJWtZdoOEaB5jNBDEFwGnEBo-L902xxgMOzua0dsZjm0JYopv32Jqc9y5OOC0zhrgx0cKA1y75NLlahXebVGrkpeAMIT0Y_w6djcYXeP90X6Jf377e3_xobu--_7y5vm1s18m5YbWtUXVr2w69aoUyVAw9MVxaDkL0vSFjPUIoNfYtE0RBx1rbG9UyKVoL_BJ9OerulnWAwUKcs_F6l10wea-TcfrfTHQbPaUHzXmnCGNV4POTQE6_FyizDq5Y8N5ESEvRlLDK0Zbyin76D92mJcc6XqUoF4IxchBcHam6x1IyjKdmKNEHA_UfA_XBQF0NrAUfn49wwv86VoGrI1BqKk6Qn__7ouQjnBGoeQ</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Albertsen, Mads</creator><creator>Hansen, Lea Benedicte Skov</creator><creator>Saunders, Aaron Marc</creator><creator>Nielsen, Per Halkjær</creator><creator>Nielsen, Kåre Lehmann</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>20120601</creationdate><title>A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal</title><author>Albertsen, Mads ; Hansen, Lea Benedicte Skov ; Saunders, Aaron Marc ; Nielsen, Per Halkjær ; Nielsen, Kåre Lehmann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-2221f85bc4d98468a16d90a37c3e6699a0ffff6688f942608e524c9a842764ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Biofilms</topic><topic>Biomedical and Life Sciences</topic><topic>Community structure</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA, Bacterial - genetics</topic><topic>Ecology</topic><topic>Evolutionary Biology</topic><topic>Fluorescence</topic><topic>Fluorescence in situ hybridization</topic><topic>Genomes</topic><topic>Gram-positive bacteria</topic><topic>Hybridization</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Metagenome</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Original</topic><topic>original-article</topic><topic>Phages</topic><topic>Phosphate</topic><topic>Phosphorus</topic><topic>Phosphorus - metabolism</topic><topic>Phosphorus removal</topic><topic>Plant communities</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>RNA, Ribosomal, 16S - metabolism</topic><topic>Sequence Analysis, DNA</topic><topic>Sewage - microbiology</topic><topic>Waste Disposal, Fluid</topic><topic>Waste water</topic><topic>Waste Water - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albertsen, Mads</creatorcontrib><creatorcontrib>Hansen, Lea Benedicte Skov</creatorcontrib><creatorcontrib>Saunders, Aaron Marc</creatorcontrib><creatorcontrib>Nielsen, Per Halkjær</creatorcontrib><creatorcontrib>Nielsen, Kåre Lehmann</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albertsen, Mads</au><au>Hansen, Lea Benedicte Skov</au><au>Saunders, Aaron Marc</au><au>Nielsen, Per Halkjær</au><au>Nielsen, Kåre Lehmann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2012-06-01</date><risdate>2012</risdate><volume>6</volume><issue>6</issue><spage>1094</spage><epage>1106</epage><pages>1094-1106</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>Enhanced biological phosphorus removal (EBPR) is widely used for removal of phosphorus from wastewater. In this study, a metagenome (18.2 Gb) was generated using Illumina sequencing from a full-scale EBPR plant to study the community structure and genetic potential. Quantitative fluorescence in situ hybridization (qFISH) was applied as an independent method to evaluate the community structure. The results were in qualitative agreement, but a DNA extraction bias against gram positive bacteria using standard extraction protocols was identified, which would not have been identified without the use of qFISH. The genetic potential for community function showed enrichment of genes involved in phosphate metabolism and biofilm formation, reflecting the selective pressure of the EBPR process. Most contigs in the assembled metagenome had low similarity to genes from currently sequenced genomes, underlining the need for more reference genomes of key EBPR species. Only the genome of ‘ Candidatus Accumulibacter’, a genus of phosphorus-removing organisms, was closely enough related to the species present in the metagenome to allow for detailed investigations. Accumulibacter accounted for only 4.8% of all bacteria by qFISH, but the depth of sequencing enabled detailed insight into their microdiversity in the full-scale plant. Only 15% of the reads matching Accumulibacter had a high similarity (&gt;95%) to the sequenced Accumulibacter clade IIA strain UW-1 genome, indicating the presence of some microdiversity. The differences in gene complement between the Accumulibacter clades were limited to genes for extracellular polymeric substances and phage-related genes, suggesting a selective pressure from phages on the Accumulibacter diversity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22170425</pmid><doi>10.1038/ismej.2011.176</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-7362
ispartof The ISME Journal, 2012-06, Vol.6 (6), p.1094-1106
issn 1751-7362
1751-7370
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3358022
source PubMed Central Free; MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals
subjects Bacteria - classification
Bacteria - genetics
Bacteria - metabolism
Biofilms
Biomedical and Life Sciences
Community structure
Deoxyribonucleic acid
DNA
DNA, Bacterial - genetics
Ecology
Evolutionary Biology
Fluorescence
Fluorescence in situ hybridization
Genomes
Gram-positive bacteria
Hybridization
In Situ Hybridization, Fluorescence
Life Sciences
Metabolism
Metagenome
Microbial Ecology
Microbial Genetics and Genomics
Microbiology
Original
original-article
Phages
Phosphate
Phosphorus
Phosphorus - metabolism
Phosphorus removal
Plant communities
RNA, Ribosomal, 16S - genetics
RNA, Ribosomal, 16S - metabolism
Sequence Analysis, DNA
Sewage - microbiology
Waste Disposal, Fluid
Waste water
Waste Water - microbiology
title A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A39%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20metagenome%20of%20a%20full-scale%20microbial%20community%20carrying%20out%20enhanced%20biological%20phosphorus%20removal&rft.jtitle=The%20ISME%20Journal&rft.au=Albertsen,%20Mads&rft.date=2012-06-01&rft.volume=6&rft.issue=6&rft.spage=1094&rft.epage=1106&rft.pages=1094-1106&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/ismej.2011.176&rft_dat=%3Cproquest_pubme%3E1028021413%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1013662202&rft_id=info:pmid/22170425&rfr_iscdi=true