Inhibition of SRGAP2 Function by Its Human-Specific Paralogs Induces Neoteny during Spine Maturation

Structural genomic variations represent a major driving force of evolution, and a burst of large segmental gene duplications occurred in the human lineage during its separation from nonhuman primates. SRGAP2, a gene recently implicated in neocortical development, has undergone two human-specific dup...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2012-05, Vol.149 (4), p.923-935
Hauptverfasser: Charrier, Cécile, Joshi, Kaumudi, Coutinho-Budd, Jaeda, Kim, Ji-Eun, Lambert, Nelle, de Marchena, Jacqueline, Jin, Wei-Lin, Vanderhaeghen, Pierre, Ghosh, Anirvan, Sassa, Takayuki, Polleux, Franck
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 935
container_issue 4
container_start_page 923
container_title Cell
container_volume 149
creator Charrier, Cécile
Joshi, Kaumudi
Coutinho-Budd, Jaeda
Kim, Ji-Eun
Lambert, Nelle
de Marchena, Jacqueline
Jin, Wei-Lin
Vanderhaeghen, Pierre
Ghosh, Anirvan
Sassa, Takayuki
Polleux, Franck
description Structural genomic variations represent a major driving force of evolution, and a burst of large segmental gene duplications occurred in the human lineage during its separation from nonhuman primates. SRGAP2, a gene recently implicated in neocortical development, has undergone two human-specific duplications. Here, we find that both duplications (SRGAP2B and SRGAP2C) are partial and encode a truncated F-BAR domain. SRGAP2C is expressed in the developing and adult human brain and dimerizes with ancestral SRGAP2 to inhibit its function. In the mouse neocortex, SRGAP2 promotes spine maturation and limits spine density. Expression of SRGAP2C phenocopies SRGAP2 deficiency. It underlies sustained radial migration and leads to the emergence of human-specific features, including neoteny during spine maturation and increased density of longer spines. These results suggest that inhibition of SRGAP2 function by its human-specific paralogs has contributed to the evolution of the human neocortex and plays an important role during human brain development. [Display omitted] ► SRGAP2 has undergone two partial duplications, specifically in the human genome ► One copy (SRGAP2C) is expressed in the human brain and antagonizes ancestral SRGAP2 ► Ancestral SRGAP2 promotes dendritic spine maturation and limits spine density in vivo ► Human SRGAP2C induces neoteny and leads to higher density of spines with longer necks A truncated duplicate gene present only in humans antagonizes the function of its parental paralog in neural development, leading to human-specific neuronal features such as increased dendritic spine density.
doi_str_mv 10.1016/j.cell.2012.03.034
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3357949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S009286741200462X</els_id><sourcerecordid>2000027674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c578t-710cffb4dab800fb575b7e6af15b9dc6ee3a46812811aa3366d9eaaccbdb08ba3</originalsourceid><addsrcrecordid>eNp9UU1rGzEUFKWlcdP8gR5aHXtZV9Ku9gNKIYQmMaRJqJOzeJLeOjK25Ei7Af_7aus0tJfCA4HezLxhhpAPnM054_WX9dzgZjMXjIs5K_NUr8iMs64pKt6I12TGWCeKtm6qI_IupTVjrJVSviVHQkjZdVU1I3bhH5x2gwuehp4uf16c3gp6Pnrz-0vv6WJI9HLcgi-WOzSud4beQoRNWCW68HY0mOg1hgH9ntoxOr-iy53zSH_AMEaYZN6TNz1sEp48v8fk_vz73dllcXVzsTg7vSqMbNqhaDgzfa8rC7plrNeykbrBGnoudWdNjVhCVbdctJwDlGVd2w4BjNFWs1ZDeUy-HXR3o96iNeiHbFTtottC3KsATv278e5BrcKTKkvZdFWXBT4_C8TwOGIa1NalKWTwGMakRI6QiSYnmqHiADUxpBSxfznDmZrqUWs1MdVUj2Jlnon08W-DL5Q_fWTApwOgh6BgFV1S98usUOe7vONysvj1gMAc5JPDqJJx6A1aF9EMygb3Pwe_ADi7rLI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2000027674</pqid></control><display><type>article</type><title>Inhibition of SRGAP2 Function by Its Human-Specific Paralogs Induces Neoteny during Spine Maturation</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Charrier, Cécile ; Joshi, Kaumudi ; Coutinho-Budd, Jaeda ; Kim, Ji-Eun ; Lambert, Nelle ; de Marchena, Jacqueline ; Jin, Wei-Lin ; Vanderhaeghen, Pierre ; Ghosh, Anirvan ; Sassa, Takayuki ; Polleux, Franck</creator><creatorcontrib>Charrier, Cécile ; Joshi, Kaumudi ; Coutinho-Budd, Jaeda ; Kim, Ji-Eun ; Lambert, Nelle ; de Marchena, Jacqueline ; Jin, Wei-Lin ; Vanderhaeghen, Pierre ; Ghosh, Anirvan ; Sassa, Takayuki ; Polleux, Franck</creatorcontrib><description>Structural genomic variations represent a major driving force of evolution, and a burst of large segmental gene duplications occurred in the human lineage during its separation from nonhuman primates. SRGAP2, a gene recently implicated in neocortical development, has undergone two human-specific duplications. Here, we find that both duplications (SRGAP2B and SRGAP2C) are partial and encode a truncated F-BAR domain. SRGAP2C is expressed in the developing and adult human brain and dimerizes with ancestral SRGAP2 to inhibit its function. In the mouse neocortex, SRGAP2 promotes spine maturation and limits spine density. Expression of SRGAP2C phenocopies SRGAP2 deficiency. It underlies sustained radial migration and leads to the emergence of human-specific features, including neoteny during spine maturation and increased density of longer spines. These results suggest that inhibition of SRGAP2 function by its human-specific paralogs has contributed to the evolution of the human neocortex and plays an important role during human brain development. [Display omitted] ► SRGAP2 has undergone two partial duplications, specifically in the human genome ► One copy (SRGAP2C) is expressed in the human brain and antagonizes ancestral SRGAP2 ► Ancestral SRGAP2 promotes dendritic spine maturation and limits spine density in vivo ► Human SRGAP2C induces neoteny and leads to higher density of spines with longer necks A truncated duplicate gene present only in humans antagonizes the function of its parental paralog in neural development, leading to human-specific neuronal features such as increased dendritic spine density.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2012.03.034</identifier><identifier>PMID: 22559944</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>adults ; Animals ; Brain - cytology ; Brain - embryology ; Cell Movement ; Dendritic Spines - metabolism ; Evolution, Molecular ; Gene Duplication ; genes ; genetic variation ; GTPase-Activating Proteins - genetics ; Humans ; Mice ; Molecular Sequence Data ; neocortex ; neoteny ; Neurons - cytology ; Neurons - metabolism ; Primates ; Protein Structure, Tertiary ; Segmental Duplications, Genomic ; Species Specificity</subject><ispartof>Cell, 2012-05, Vol.149 (4), p.923-935</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>2012 Elsevier Inc. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c578t-710cffb4dab800fb575b7e6af15b9dc6ee3a46812811aa3366d9eaaccbdb08ba3</citedby><cites>FETCH-LOGICAL-c578t-710cffb4dab800fb575b7e6af15b9dc6ee3a46812811aa3366d9eaaccbdb08ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S009286741200462X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22559944$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Charrier, Cécile</creatorcontrib><creatorcontrib>Joshi, Kaumudi</creatorcontrib><creatorcontrib>Coutinho-Budd, Jaeda</creatorcontrib><creatorcontrib>Kim, Ji-Eun</creatorcontrib><creatorcontrib>Lambert, Nelle</creatorcontrib><creatorcontrib>de Marchena, Jacqueline</creatorcontrib><creatorcontrib>Jin, Wei-Lin</creatorcontrib><creatorcontrib>Vanderhaeghen, Pierre</creatorcontrib><creatorcontrib>Ghosh, Anirvan</creatorcontrib><creatorcontrib>Sassa, Takayuki</creatorcontrib><creatorcontrib>Polleux, Franck</creatorcontrib><title>Inhibition of SRGAP2 Function by Its Human-Specific Paralogs Induces Neoteny during Spine Maturation</title><title>Cell</title><addtitle>Cell</addtitle><description>Structural genomic variations represent a major driving force of evolution, and a burst of large segmental gene duplications occurred in the human lineage during its separation from nonhuman primates. SRGAP2, a gene recently implicated in neocortical development, has undergone two human-specific duplications. Here, we find that both duplications (SRGAP2B and SRGAP2C) are partial and encode a truncated F-BAR domain. SRGAP2C is expressed in the developing and adult human brain and dimerizes with ancestral SRGAP2 to inhibit its function. In the mouse neocortex, SRGAP2 promotes spine maturation and limits spine density. Expression of SRGAP2C phenocopies SRGAP2 deficiency. It underlies sustained radial migration and leads to the emergence of human-specific features, including neoteny during spine maturation and increased density of longer spines. These results suggest that inhibition of SRGAP2 function by its human-specific paralogs has contributed to the evolution of the human neocortex and plays an important role during human brain development. [Display omitted] ► SRGAP2 has undergone two partial duplications, specifically in the human genome ► One copy (SRGAP2C) is expressed in the human brain and antagonizes ancestral SRGAP2 ► Ancestral SRGAP2 promotes dendritic spine maturation and limits spine density in vivo ► Human SRGAP2C induces neoteny and leads to higher density of spines with longer necks A truncated duplicate gene present only in humans antagonizes the function of its parental paralog in neural development, leading to human-specific neuronal features such as increased dendritic spine density.</description><subject>adults</subject><subject>Animals</subject><subject>Brain - cytology</subject><subject>Brain - embryology</subject><subject>Cell Movement</subject><subject>Dendritic Spines - metabolism</subject><subject>Evolution, Molecular</subject><subject>Gene Duplication</subject><subject>genes</subject><subject>genetic variation</subject><subject>GTPase-Activating Proteins - genetics</subject><subject>Humans</subject><subject>Mice</subject><subject>Molecular Sequence Data</subject><subject>neocortex</subject><subject>neoteny</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Primates</subject><subject>Protein Structure, Tertiary</subject><subject>Segmental Duplications, Genomic</subject><subject>Species Specificity</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1rGzEUFKWlcdP8gR5aHXtZV9Ku9gNKIYQmMaRJqJOzeJLeOjK25Ei7Af_7aus0tJfCA4HezLxhhpAPnM054_WX9dzgZjMXjIs5K_NUr8iMs64pKt6I12TGWCeKtm6qI_IupTVjrJVSviVHQkjZdVU1I3bhH5x2gwuehp4uf16c3gp6Pnrz-0vv6WJI9HLcgi-WOzSud4beQoRNWCW68HY0mOg1hgH9ntoxOr-iy53zSH_AMEaYZN6TNz1sEp48v8fk_vz73dllcXVzsTg7vSqMbNqhaDgzfa8rC7plrNeykbrBGnoudWdNjVhCVbdctJwDlGVd2w4BjNFWs1ZDeUy-HXR3o96iNeiHbFTtottC3KsATv278e5BrcKTKkvZdFWXBT4_C8TwOGIa1NalKWTwGMakRI6QiSYnmqHiADUxpBSxfznDmZrqUWs1MdVUj2Jlnon08W-DL5Q_fWTApwOgh6BgFV1S98usUOe7vONysvj1gMAc5JPDqJJx6A1aF9EMygb3Pwe_ADi7rLI</recordid><startdate>20120511</startdate><enddate>20120511</enddate><creator>Charrier, Cécile</creator><creator>Joshi, Kaumudi</creator><creator>Coutinho-Budd, Jaeda</creator><creator>Kim, Ji-Eun</creator><creator>Lambert, Nelle</creator><creator>de Marchena, Jacqueline</creator><creator>Jin, Wei-Lin</creator><creator>Vanderhaeghen, Pierre</creator><creator>Ghosh, Anirvan</creator><creator>Sassa, Takayuki</creator><creator>Polleux, Franck</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20120511</creationdate><title>Inhibition of SRGAP2 Function by Its Human-Specific Paralogs Induces Neoteny during Spine Maturation</title><author>Charrier, Cécile ; Joshi, Kaumudi ; Coutinho-Budd, Jaeda ; Kim, Ji-Eun ; Lambert, Nelle ; de Marchena, Jacqueline ; Jin, Wei-Lin ; Vanderhaeghen, Pierre ; Ghosh, Anirvan ; Sassa, Takayuki ; Polleux, Franck</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c578t-710cffb4dab800fb575b7e6af15b9dc6ee3a46812811aa3366d9eaaccbdb08ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>adults</topic><topic>Animals</topic><topic>Brain - cytology</topic><topic>Brain - embryology</topic><topic>Cell Movement</topic><topic>Dendritic Spines - metabolism</topic><topic>Evolution, Molecular</topic><topic>Gene Duplication</topic><topic>genes</topic><topic>genetic variation</topic><topic>GTPase-Activating Proteins - genetics</topic><topic>Humans</topic><topic>Mice</topic><topic>Molecular Sequence Data</topic><topic>neocortex</topic><topic>neoteny</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Primates</topic><topic>Protein Structure, Tertiary</topic><topic>Segmental Duplications, Genomic</topic><topic>Species Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charrier, Cécile</creatorcontrib><creatorcontrib>Joshi, Kaumudi</creatorcontrib><creatorcontrib>Coutinho-Budd, Jaeda</creatorcontrib><creatorcontrib>Kim, Ji-Eun</creatorcontrib><creatorcontrib>Lambert, Nelle</creatorcontrib><creatorcontrib>de Marchena, Jacqueline</creatorcontrib><creatorcontrib>Jin, Wei-Lin</creatorcontrib><creatorcontrib>Vanderhaeghen, Pierre</creatorcontrib><creatorcontrib>Ghosh, Anirvan</creatorcontrib><creatorcontrib>Sassa, Takayuki</creatorcontrib><creatorcontrib>Polleux, Franck</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charrier, Cécile</au><au>Joshi, Kaumudi</au><au>Coutinho-Budd, Jaeda</au><au>Kim, Ji-Eun</au><au>Lambert, Nelle</au><au>de Marchena, Jacqueline</au><au>Jin, Wei-Lin</au><au>Vanderhaeghen, Pierre</au><au>Ghosh, Anirvan</au><au>Sassa, Takayuki</au><au>Polleux, Franck</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition of SRGAP2 Function by Its Human-Specific Paralogs Induces Neoteny during Spine Maturation</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2012-05-11</date><risdate>2012</risdate><volume>149</volume><issue>4</issue><spage>923</spage><epage>935</epage><pages>923-935</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Structural genomic variations represent a major driving force of evolution, and a burst of large segmental gene duplications occurred in the human lineage during its separation from nonhuman primates. SRGAP2, a gene recently implicated in neocortical development, has undergone two human-specific duplications. Here, we find that both duplications (SRGAP2B and SRGAP2C) are partial and encode a truncated F-BAR domain. SRGAP2C is expressed in the developing and adult human brain and dimerizes with ancestral SRGAP2 to inhibit its function. In the mouse neocortex, SRGAP2 promotes spine maturation and limits spine density. Expression of SRGAP2C phenocopies SRGAP2 deficiency. It underlies sustained radial migration and leads to the emergence of human-specific features, including neoteny during spine maturation and increased density of longer spines. These results suggest that inhibition of SRGAP2 function by its human-specific paralogs has contributed to the evolution of the human neocortex and plays an important role during human brain development. [Display omitted] ► SRGAP2 has undergone two partial duplications, specifically in the human genome ► One copy (SRGAP2C) is expressed in the human brain and antagonizes ancestral SRGAP2 ► Ancestral SRGAP2 promotes dendritic spine maturation and limits spine density in vivo ► Human SRGAP2C induces neoteny and leads to higher density of spines with longer necks A truncated duplicate gene present only in humans antagonizes the function of its parental paralog in neural development, leading to human-specific neuronal features such as increased dendritic spine density.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22559944</pmid><doi>10.1016/j.cell.2012.03.034</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2012-05, Vol.149 (4), p.923-935
issn 0092-8674
1097-4172
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3357949
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects adults
Animals
Brain - cytology
Brain - embryology
Cell Movement
Dendritic Spines - metabolism
Evolution, Molecular
Gene Duplication
genes
genetic variation
GTPase-Activating Proteins - genetics
Humans
Mice
Molecular Sequence Data
neocortex
neoteny
Neurons - cytology
Neurons - metabolism
Primates
Protein Structure, Tertiary
Segmental Duplications, Genomic
Species Specificity
title Inhibition of SRGAP2 Function by Its Human-Specific Paralogs Induces Neoteny during Spine Maturation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T14%3A07%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition%20of%20SRGAP2%20Function%20by%20Its%20Human-Specific%20Paralogs%20Induces%20Neoteny%20during%20Spine%20Maturation&rft.jtitle=Cell&rft.au=Charrier,%20C%C3%A9cile&rft.date=2012-05-11&rft.volume=149&rft.issue=4&rft.spage=923&rft.epage=935&rft.pages=923-935&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2012.03.034&rft_dat=%3Cproquest_pubme%3E2000027674%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2000027674&rft_id=info:pmid/22559944&rft_els_id=S009286741200462X&rfr_iscdi=true