A Virtual Pyrogram Generator to Resolve Complex Pyrosequencing Results

We report a freely available software program, Pyromaker, which generates simulated traces for pyrosequencing results based on user inputs. Simulated pyrograms can aid in the analysis of complex pyrosequencing results in which various hypothesized mutations can be tested, and the resultant pyrograms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of molecular diagnostics : JMD 2012-03, Vol.14 (2), p.149-159
Hauptverfasser: Chen, Guoli, Olson, Matthew Theodore, O'Neill, Alan, Norris, Alexis, Beierl, Katie, Harada, Shuko, Debeljak, Marija, Rivera-Roman, Keila, Finley, Samantha, Stafford, Amanda, Gocke, Christopher David, Lin, Ming-Tseh, Eshleman, James Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 159
container_issue 2
container_start_page 149
container_title The Journal of molecular diagnostics : JMD
container_volume 14
creator Chen, Guoli
Olson, Matthew Theodore
O'Neill, Alan
Norris, Alexis
Beierl, Katie
Harada, Shuko
Debeljak, Marija
Rivera-Roman, Keila
Finley, Samantha
Stafford, Amanda
Gocke, Christopher David
Lin, Ming-Tseh
Eshleman, James Richard
description We report a freely available software program, Pyromaker, which generates simulated traces for pyrosequencing results based on user inputs. Simulated pyrograms can aid in the analysis of complex pyrosequencing results in which various hypothesized mutations can be tested, and the resultant pyrograms can be matched with the actual pyrogram. We validated the software using the actual pyrograms for common KRAS gene mutations as well as several mutations in the BRAF , GNAS , and p53 genes. We demonstrate that all 18 possible single-base mutations within codons 12 and 13 of KRAS generate unique pyrosequencing traces and highlight the distinctions between them. We further show that all reported codon 12 and 13 complex mutations produce unique pyrograms. However, some complex mutations are indistinguishable from single-base mutations. For complicated pyrograms, Pyromaker was used in two modes, one in which hypothesis-based simulated pyrograms were pattern-matched with the actual pyrograms. In a second strategy with only the pyrogram, Pyromaker was used to identify the underlying mutation by iteratively reconstructing the mutant pyrogram. Either strategy was able to successfully identify the complex mutations, which were confirmed by cloning and sequencing. Using two examples of KRAS codon 12 mutations (specifically GGT→ TT T, G12F and GGT→G AG , G12E), we report which combinations of five approaches permit unambiguous mutation identification. The most efficient approach was found to be pyrosequencing with Pyromaker.
doi_str_mv 10.1016/j.jmoldx.2011.12.001
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3349844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S1525157811003151</els_id><sourcerecordid>922497946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-16ff994b8e41029348a8f8a830be1c43e5865478db3153bdac8ba632afe833ed3</originalsourceid><addsrcrecordid>eNqFUk1v1DAQjRCIlsI_QCg3Tkk9tpPYF6Rq1RakSkV8XS3HmSwOTrzYyar773HYUj4uHCxbmjdv_N6bLHsJpAQC9flQDqN33V1JCUAJtCQEHmWnIDkrGgHwOL0rWhVQNeIkexbjkACc1_RpdkIpg7qi8jS7usi_2DAv2uXvD8Fvgx7za5ww6NmHfPb5B4ze7THf-HHn8O4nKuL3BSdjp-1aXtwcn2dPeu0ivri_z7LPV5efNm-Lm9vrd5uLm8JU0MwF1H0vJW8FciBUMi606NNhpEUwnGEl6oo3omsZVKzttBGtrhnVPQrGsGNn2Zsj725pR-wMTnPQTu2CHXU4KK-t-rsy2a9q6_eKMS4F54ng9T1B8ElEnNVoo0Hn9IR-iUpSymUjeZ2Q_Ig0SXAM2D9MAaLWBNSgjgmoNQEFVCWDU9urP3_40PTL8t8SMPm0txhUNDa5iZ0NaGbVefu_Cf8SGGcna7T7hgeMg1_ClDJQoGJqUB_XLViXAICQZCuwH6Pdr5k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922497946</pqid></control><display><type>article</type><title>A Virtual Pyrogram Generator to Resolve Complex Pyrosequencing Results</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Chen, Guoli ; Olson, Matthew Theodore ; O'Neill, Alan ; Norris, Alexis ; Beierl, Katie ; Harada, Shuko ; Debeljak, Marija ; Rivera-Roman, Keila ; Finley, Samantha ; Stafford, Amanda ; Gocke, Christopher David ; Lin, Ming-Tseh ; Eshleman, James Richard</creator><creatorcontrib>Chen, Guoli ; Olson, Matthew Theodore ; O'Neill, Alan ; Norris, Alexis ; Beierl, Katie ; Harada, Shuko ; Debeljak, Marija ; Rivera-Roman, Keila ; Finley, Samantha ; Stafford, Amanda ; Gocke, Christopher David ; Lin, Ming-Tseh ; Eshleman, James Richard</creatorcontrib><description>We report a freely available software program, Pyromaker, which generates simulated traces for pyrosequencing results based on user inputs. Simulated pyrograms can aid in the analysis of complex pyrosequencing results in which various hypothesized mutations can be tested, and the resultant pyrograms can be matched with the actual pyrogram. We validated the software using the actual pyrograms for common KRAS gene mutations as well as several mutations in the BRAF , GNAS , and p53 genes. We demonstrate that all 18 possible single-base mutations within codons 12 and 13 of KRAS generate unique pyrosequencing traces and highlight the distinctions between them. We further show that all reported codon 12 and 13 complex mutations produce unique pyrograms. However, some complex mutations are indistinguishable from single-base mutations. For complicated pyrograms, Pyromaker was used in two modes, one in which hypothesis-based simulated pyrograms were pattern-matched with the actual pyrograms. In a second strategy with only the pyrogram, Pyromaker was used to identify the underlying mutation by iteratively reconstructing the mutant pyrogram. Either strategy was able to successfully identify the complex mutations, which were confirmed by cloning and sequencing. Using two examples of KRAS codon 12 mutations (specifically GGT→ TT T, G12F and GGT→G AG , G12E), we report which combinations of five approaches permit unambiguous mutation identification. The most efficient approach was found to be pyrosequencing with Pyromaker.</description><identifier>ISSN: 1525-1578</identifier><identifier>EISSN: 1943-7811</identifier><identifier>DOI: 10.1016/j.jmoldx.2011.12.001</identifier><identifier>PMID: 22316529</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Codon - genetics ; DNA Mutational Analysis - methods ; High-Throughput Nucleotide Sequencing ; Humans ; Mutation - genetics ; Neoplasms - genetics ; Neoplasms - pathology ; Pathology ; Proto-Oncogene Proteins - genetics ; Proto-Oncogene Proteins B-raf - genetics ; Proto-Oncogene Proteins p21(ras) ; ras Proteins - genetics ; Regular ; Software</subject><ispartof>The Journal of molecular diagnostics : JMD, 2012-03, Vol.14 (2), p.149-159</ispartof><rights>American Society for Investigative Pathology and the Association for Molecular Pathology</rights><rights>2012 American Society for Investigative Pathology and the Association for Molecular Pathology</rights><rights>Copyright © 2012 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.</rights><rights>2012 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved. 2012 American Society for Investigative Pathology and the Association for Molecular Pathology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-16ff994b8e41029348a8f8a830be1c43e5865478db3153bdac8ba632afe833ed3</citedby><cites>FETCH-LOGICAL-c517t-16ff994b8e41029348a8f8a830be1c43e5865478db3153bdac8ba632afe833ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmoldx.2011.12.001$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22316529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Guoli</creatorcontrib><creatorcontrib>Olson, Matthew Theodore</creatorcontrib><creatorcontrib>O'Neill, Alan</creatorcontrib><creatorcontrib>Norris, Alexis</creatorcontrib><creatorcontrib>Beierl, Katie</creatorcontrib><creatorcontrib>Harada, Shuko</creatorcontrib><creatorcontrib>Debeljak, Marija</creatorcontrib><creatorcontrib>Rivera-Roman, Keila</creatorcontrib><creatorcontrib>Finley, Samantha</creatorcontrib><creatorcontrib>Stafford, Amanda</creatorcontrib><creatorcontrib>Gocke, Christopher David</creatorcontrib><creatorcontrib>Lin, Ming-Tseh</creatorcontrib><creatorcontrib>Eshleman, James Richard</creatorcontrib><title>A Virtual Pyrogram Generator to Resolve Complex Pyrosequencing Results</title><title>The Journal of molecular diagnostics : JMD</title><addtitle>J Mol Diagn</addtitle><description>We report a freely available software program, Pyromaker, which generates simulated traces for pyrosequencing results based on user inputs. Simulated pyrograms can aid in the analysis of complex pyrosequencing results in which various hypothesized mutations can be tested, and the resultant pyrograms can be matched with the actual pyrogram. We validated the software using the actual pyrograms for common KRAS gene mutations as well as several mutations in the BRAF , GNAS , and p53 genes. We demonstrate that all 18 possible single-base mutations within codons 12 and 13 of KRAS generate unique pyrosequencing traces and highlight the distinctions between them. We further show that all reported codon 12 and 13 complex mutations produce unique pyrograms. However, some complex mutations are indistinguishable from single-base mutations. For complicated pyrograms, Pyromaker was used in two modes, one in which hypothesis-based simulated pyrograms were pattern-matched with the actual pyrograms. In a second strategy with only the pyrogram, Pyromaker was used to identify the underlying mutation by iteratively reconstructing the mutant pyrogram. Either strategy was able to successfully identify the complex mutations, which were confirmed by cloning and sequencing. Using two examples of KRAS codon 12 mutations (specifically GGT→ TT T, G12F and GGT→G AG , G12E), we report which combinations of five approaches permit unambiguous mutation identification. The most efficient approach was found to be pyrosequencing with Pyromaker.</description><subject>Codon - genetics</subject><subject>DNA Mutational Analysis - methods</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Mutation - genetics</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - pathology</subject><subject>Pathology</subject><subject>Proto-Oncogene Proteins - genetics</subject><subject>Proto-Oncogene Proteins B-raf - genetics</subject><subject>Proto-Oncogene Proteins p21(ras)</subject><subject>ras Proteins - genetics</subject><subject>Regular</subject><subject>Software</subject><issn>1525-1578</issn><issn>1943-7811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUk1v1DAQjRCIlsI_QCg3Tkk9tpPYF6Rq1RakSkV8XS3HmSwOTrzYyar773HYUj4uHCxbmjdv_N6bLHsJpAQC9flQDqN33V1JCUAJtCQEHmWnIDkrGgHwOL0rWhVQNeIkexbjkACc1_RpdkIpg7qi8jS7usi_2DAv2uXvD8Fvgx7za5ww6NmHfPb5B4ze7THf-HHn8O4nKuL3BSdjp-1aXtwcn2dPeu0ivri_z7LPV5efNm-Lm9vrd5uLm8JU0MwF1H0vJW8FciBUMi606NNhpEUwnGEl6oo3omsZVKzttBGtrhnVPQrGsGNn2Zsj725pR-wMTnPQTu2CHXU4KK-t-rsy2a9q6_eKMS4F54ng9T1B8ElEnNVoo0Hn9IR-iUpSymUjeZ2Q_Ig0SXAM2D9MAaLWBNSgjgmoNQEFVCWDU9urP3_40PTL8t8SMPm0txhUNDa5iZ0NaGbVefu_Cf8SGGcna7T7hgeMg1_ClDJQoGJqUB_XLViXAICQZCuwH6Pdr5k</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Chen, Guoli</creator><creator>Olson, Matthew Theodore</creator><creator>O'Neill, Alan</creator><creator>Norris, Alexis</creator><creator>Beierl, Katie</creator><creator>Harada, Shuko</creator><creator>Debeljak, Marija</creator><creator>Rivera-Roman, Keila</creator><creator>Finley, Samantha</creator><creator>Stafford, Amanda</creator><creator>Gocke, Christopher David</creator><creator>Lin, Ming-Tseh</creator><creator>Eshleman, James Richard</creator><general>Elsevier Inc</general><general>American Society for Investigative Pathology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120301</creationdate><title>A Virtual Pyrogram Generator to Resolve Complex Pyrosequencing Results</title><author>Chen, Guoli ; Olson, Matthew Theodore ; O'Neill, Alan ; Norris, Alexis ; Beierl, Katie ; Harada, Shuko ; Debeljak, Marija ; Rivera-Roman, Keila ; Finley, Samantha ; Stafford, Amanda ; Gocke, Christopher David ; Lin, Ming-Tseh ; Eshleman, James Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-16ff994b8e41029348a8f8a830be1c43e5865478db3153bdac8ba632afe833ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Codon - genetics</topic><topic>DNA Mutational Analysis - methods</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Mutation - genetics</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - pathology</topic><topic>Pathology</topic><topic>Proto-Oncogene Proteins - genetics</topic><topic>Proto-Oncogene Proteins B-raf - genetics</topic><topic>Proto-Oncogene Proteins p21(ras)</topic><topic>ras Proteins - genetics</topic><topic>Regular</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Guoli</creatorcontrib><creatorcontrib>Olson, Matthew Theodore</creatorcontrib><creatorcontrib>O'Neill, Alan</creatorcontrib><creatorcontrib>Norris, Alexis</creatorcontrib><creatorcontrib>Beierl, Katie</creatorcontrib><creatorcontrib>Harada, Shuko</creatorcontrib><creatorcontrib>Debeljak, Marija</creatorcontrib><creatorcontrib>Rivera-Roman, Keila</creatorcontrib><creatorcontrib>Finley, Samantha</creatorcontrib><creatorcontrib>Stafford, Amanda</creatorcontrib><creatorcontrib>Gocke, Christopher David</creatorcontrib><creatorcontrib>Lin, Ming-Tseh</creatorcontrib><creatorcontrib>Eshleman, James Richard</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of molecular diagnostics : JMD</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Guoli</au><au>Olson, Matthew Theodore</au><au>O'Neill, Alan</au><au>Norris, Alexis</au><au>Beierl, Katie</au><au>Harada, Shuko</au><au>Debeljak, Marija</au><au>Rivera-Roman, Keila</au><au>Finley, Samantha</au><au>Stafford, Amanda</au><au>Gocke, Christopher David</au><au>Lin, Ming-Tseh</au><au>Eshleman, James Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Virtual Pyrogram Generator to Resolve Complex Pyrosequencing Results</atitle><jtitle>The Journal of molecular diagnostics : JMD</jtitle><addtitle>J Mol Diagn</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>14</volume><issue>2</issue><spage>149</spage><epage>159</epage><pages>149-159</pages><issn>1525-1578</issn><eissn>1943-7811</eissn><abstract>We report a freely available software program, Pyromaker, which generates simulated traces for pyrosequencing results based on user inputs. Simulated pyrograms can aid in the analysis of complex pyrosequencing results in which various hypothesized mutations can be tested, and the resultant pyrograms can be matched with the actual pyrogram. We validated the software using the actual pyrograms for common KRAS gene mutations as well as several mutations in the BRAF , GNAS , and p53 genes. We demonstrate that all 18 possible single-base mutations within codons 12 and 13 of KRAS generate unique pyrosequencing traces and highlight the distinctions between them. We further show that all reported codon 12 and 13 complex mutations produce unique pyrograms. However, some complex mutations are indistinguishable from single-base mutations. For complicated pyrograms, Pyromaker was used in two modes, one in which hypothesis-based simulated pyrograms were pattern-matched with the actual pyrograms. In a second strategy with only the pyrogram, Pyromaker was used to identify the underlying mutation by iteratively reconstructing the mutant pyrogram. Either strategy was able to successfully identify the complex mutations, which were confirmed by cloning and sequencing. Using two examples of KRAS codon 12 mutations (specifically GGT→ TT T, G12F and GGT→G AG , G12E), we report which combinations of five approaches permit unambiguous mutation identification. The most efficient approach was found to be pyrosequencing with Pyromaker.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22316529</pmid><doi>10.1016/j.jmoldx.2011.12.001</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-1578
ispartof The Journal of molecular diagnostics : JMD, 2012-03, Vol.14 (2), p.149-159
issn 1525-1578
1943-7811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3349844
source MEDLINE; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Codon - genetics
DNA Mutational Analysis - methods
High-Throughput Nucleotide Sequencing
Humans
Mutation - genetics
Neoplasms - genetics
Neoplasms - pathology
Pathology
Proto-Oncogene Proteins - genetics
Proto-Oncogene Proteins B-raf - genetics
Proto-Oncogene Proteins p21(ras)
ras Proteins - genetics
Regular
Software
title A Virtual Pyrogram Generator to Resolve Complex Pyrosequencing Results
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T22%3A49%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Virtual%20Pyrogram%20Generator%20to%20Resolve%20Complex%20Pyrosequencing%20Results&rft.jtitle=The%20Journal%20of%20molecular%20diagnostics%20:%20JMD&rft.au=Chen,%20Guoli&rft.date=2012-03-01&rft.volume=14&rft.issue=2&rft.spage=149&rft.epage=159&rft.pages=149-159&rft.issn=1525-1578&rft.eissn=1943-7811&rft_id=info:doi/10.1016/j.jmoldx.2011.12.001&rft_dat=%3Cproquest_pubme%3E922497946%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922497946&rft_id=info:pmid/22316529&rft_els_id=1_s2_0_S1525157811003151&rfr_iscdi=true