A Virtual Pyrogram Generator to Resolve Complex Pyrosequencing Results
We report a freely available software program, Pyromaker, which generates simulated traces for pyrosequencing results based on user inputs. Simulated pyrograms can aid in the analysis of complex pyrosequencing results in which various hypothesized mutations can be tested, and the resultant pyrograms...
Gespeichert in:
Veröffentlicht in: | The Journal of molecular diagnostics : JMD 2012-03, Vol.14 (2), p.149-159 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 159 |
---|---|
container_issue | 2 |
container_start_page | 149 |
container_title | The Journal of molecular diagnostics : JMD |
container_volume | 14 |
creator | Chen, Guoli Olson, Matthew Theodore O'Neill, Alan Norris, Alexis Beierl, Katie Harada, Shuko Debeljak, Marija Rivera-Roman, Keila Finley, Samantha Stafford, Amanda Gocke, Christopher David Lin, Ming-Tseh Eshleman, James Richard |
description | We report a freely available software program, Pyromaker, which generates simulated traces for pyrosequencing results based on user inputs. Simulated pyrograms can aid in the analysis of complex pyrosequencing results in which various hypothesized mutations can be tested, and the resultant pyrograms can be matched with the actual pyrogram. We validated the software using the actual pyrograms for common KRAS gene mutations as well as several mutations in the BRAF , GNAS , and p53 genes. We demonstrate that all 18 possible single-base mutations within codons 12 and 13 of KRAS generate unique pyrosequencing traces and highlight the distinctions between them. We further show that all reported codon 12 and 13 complex mutations produce unique pyrograms. However, some complex mutations are indistinguishable from single-base mutations. For complicated pyrograms, Pyromaker was used in two modes, one in which hypothesis-based simulated pyrograms were pattern-matched with the actual pyrograms. In a second strategy with only the pyrogram, Pyromaker was used to identify the underlying mutation by iteratively reconstructing the mutant pyrogram. Either strategy was able to successfully identify the complex mutations, which were confirmed by cloning and sequencing. Using two examples of KRAS codon 12 mutations (specifically GGT→ TT T, G12F and GGT→G AG , G12E), we report which combinations of five approaches permit unambiguous mutation identification. The most efficient approach was found to be pyrosequencing with Pyromaker. |
doi_str_mv | 10.1016/j.jmoldx.2011.12.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3349844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S1525157811003151</els_id><sourcerecordid>922497946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-16ff994b8e41029348a8f8a830be1c43e5865478db3153bdac8ba632afe833ed3</originalsourceid><addsrcrecordid>eNqFUk1v1DAQjRCIlsI_QCg3Tkk9tpPYF6Rq1RakSkV8XS3HmSwOTrzYyar773HYUj4uHCxbmjdv_N6bLHsJpAQC9flQDqN33V1JCUAJtCQEHmWnIDkrGgHwOL0rWhVQNeIkexbjkACc1_RpdkIpg7qi8jS7usi_2DAv2uXvD8Fvgx7za5ww6NmHfPb5B4ze7THf-HHn8O4nKuL3BSdjp-1aXtwcn2dPeu0ivri_z7LPV5efNm-Lm9vrd5uLm8JU0MwF1H0vJW8FciBUMi606NNhpEUwnGEl6oo3omsZVKzttBGtrhnVPQrGsGNn2Zsj725pR-wMTnPQTu2CHXU4KK-t-rsy2a9q6_eKMS4F54ng9T1B8ElEnNVoo0Hn9IR-iUpSymUjeZ2Q_Ig0SXAM2D9MAaLWBNSgjgmoNQEFVCWDU9urP3_40PTL8t8SMPm0txhUNDa5iZ0NaGbVefu_Cf8SGGcna7T7hgeMg1_ClDJQoGJqUB_XLViXAICQZCuwH6Pdr5k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922497946</pqid></control><display><type>article</type><title>A Virtual Pyrogram Generator to Resolve Complex Pyrosequencing Results</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Chen, Guoli ; Olson, Matthew Theodore ; O'Neill, Alan ; Norris, Alexis ; Beierl, Katie ; Harada, Shuko ; Debeljak, Marija ; Rivera-Roman, Keila ; Finley, Samantha ; Stafford, Amanda ; Gocke, Christopher David ; Lin, Ming-Tseh ; Eshleman, James Richard</creator><creatorcontrib>Chen, Guoli ; Olson, Matthew Theodore ; O'Neill, Alan ; Norris, Alexis ; Beierl, Katie ; Harada, Shuko ; Debeljak, Marija ; Rivera-Roman, Keila ; Finley, Samantha ; Stafford, Amanda ; Gocke, Christopher David ; Lin, Ming-Tseh ; Eshleman, James Richard</creatorcontrib><description>We report a freely available software program, Pyromaker, which generates simulated traces for pyrosequencing results based on user inputs. Simulated pyrograms can aid in the analysis of complex pyrosequencing results in which various hypothesized mutations can be tested, and the resultant pyrograms can be matched with the actual pyrogram. We validated the software using the actual pyrograms for common KRAS gene mutations as well as several mutations in the BRAF , GNAS , and p53 genes. We demonstrate that all 18 possible single-base mutations within codons 12 and 13 of KRAS generate unique pyrosequencing traces and highlight the distinctions between them. We further show that all reported codon 12 and 13 complex mutations produce unique pyrograms. However, some complex mutations are indistinguishable from single-base mutations. For complicated pyrograms, Pyromaker was used in two modes, one in which hypothesis-based simulated pyrograms were pattern-matched with the actual pyrograms. In a second strategy with only the pyrogram, Pyromaker was used to identify the underlying mutation by iteratively reconstructing the mutant pyrogram. Either strategy was able to successfully identify the complex mutations, which were confirmed by cloning and sequencing. Using two examples of KRAS codon 12 mutations (specifically GGT→ TT T, G12F and GGT→G AG , G12E), we report which combinations of five approaches permit unambiguous mutation identification. The most efficient approach was found to be pyrosequencing with Pyromaker.</description><identifier>ISSN: 1525-1578</identifier><identifier>EISSN: 1943-7811</identifier><identifier>DOI: 10.1016/j.jmoldx.2011.12.001</identifier><identifier>PMID: 22316529</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Codon - genetics ; DNA Mutational Analysis - methods ; High-Throughput Nucleotide Sequencing ; Humans ; Mutation - genetics ; Neoplasms - genetics ; Neoplasms - pathology ; Pathology ; Proto-Oncogene Proteins - genetics ; Proto-Oncogene Proteins B-raf - genetics ; Proto-Oncogene Proteins p21(ras) ; ras Proteins - genetics ; Regular ; Software</subject><ispartof>The Journal of molecular diagnostics : JMD, 2012-03, Vol.14 (2), p.149-159</ispartof><rights>American Society for Investigative Pathology and the Association for Molecular Pathology</rights><rights>2012 American Society for Investigative Pathology and the Association for Molecular Pathology</rights><rights>Copyright © 2012 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.</rights><rights>2012 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved. 2012 American Society for Investigative Pathology and the Association for Molecular Pathology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-16ff994b8e41029348a8f8a830be1c43e5865478db3153bdac8ba632afe833ed3</citedby><cites>FETCH-LOGICAL-c517t-16ff994b8e41029348a8f8a830be1c43e5865478db3153bdac8ba632afe833ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmoldx.2011.12.001$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22316529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Guoli</creatorcontrib><creatorcontrib>Olson, Matthew Theodore</creatorcontrib><creatorcontrib>O'Neill, Alan</creatorcontrib><creatorcontrib>Norris, Alexis</creatorcontrib><creatorcontrib>Beierl, Katie</creatorcontrib><creatorcontrib>Harada, Shuko</creatorcontrib><creatorcontrib>Debeljak, Marija</creatorcontrib><creatorcontrib>Rivera-Roman, Keila</creatorcontrib><creatorcontrib>Finley, Samantha</creatorcontrib><creatorcontrib>Stafford, Amanda</creatorcontrib><creatorcontrib>Gocke, Christopher David</creatorcontrib><creatorcontrib>Lin, Ming-Tseh</creatorcontrib><creatorcontrib>Eshleman, James Richard</creatorcontrib><title>A Virtual Pyrogram Generator to Resolve Complex Pyrosequencing Results</title><title>The Journal of molecular diagnostics : JMD</title><addtitle>J Mol Diagn</addtitle><description>We report a freely available software program, Pyromaker, which generates simulated traces for pyrosequencing results based on user inputs. Simulated pyrograms can aid in the analysis of complex pyrosequencing results in which various hypothesized mutations can be tested, and the resultant pyrograms can be matched with the actual pyrogram. We validated the software using the actual pyrograms for common KRAS gene mutations as well as several mutations in the BRAF , GNAS , and p53 genes. We demonstrate that all 18 possible single-base mutations within codons 12 and 13 of KRAS generate unique pyrosequencing traces and highlight the distinctions between them. We further show that all reported codon 12 and 13 complex mutations produce unique pyrograms. However, some complex mutations are indistinguishable from single-base mutations. For complicated pyrograms, Pyromaker was used in two modes, one in which hypothesis-based simulated pyrograms were pattern-matched with the actual pyrograms. In a second strategy with only the pyrogram, Pyromaker was used to identify the underlying mutation by iteratively reconstructing the mutant pyrogram. Either strategy was able to successfully identify the complex mutations, which were confirmed by cloning and sequencing. Using two examples of KRAS codon 12 mutations (specifically GGT→ TT T, G12F and GGT→G AG , G12E), we report which combinations of five approaches permit unambiguous mutation identification. The most efficient approach was found to be pyrosequencing with Pyromaker.</description><subject>Codon - genetics</subject><subject>DNA Mutational Analysis - methods</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Mutation - genetics</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - pathology</subject><subject>Pathology</subject><subject>Proto-Oncogene Proteins - genetics</subject><subject>Proto-Oncogene Proteins B-raf - genetics</subject><subject>Proto-Oncogene Proteins p21(ras)</subject><subject>ras Proteins - genetics</subject><subject>Regular</subject><subject>Software</subject><issn>1525-1578</issn><issn>1943-7811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUk1v1DAQjRCIlsI_QCg3Tkk9tpPYF6Rq1RakSkV8XS3HmSwOTrzYyar773HYUj4uHCxbmjdv_N6bLHsJpAQC9flQDqN33V1JCUAJtCQEHmWnIDkrGgHwOL0rWhVQNeIkexbjkACc1_RpdkIpg7qi8jS7usi_2DAv2uXvD8Fvgx7za5ww6NmHfPb5B4ze7THf-HHn8O4nKuL3BSdjp-1aXtwcn2dPeu0ivri_z7LPV5efNm-Lm9vrd5uLm8JU0MwF1H0vJW8FciBUMi606NNhpEUwnGEl6oo3omsZVKzttBGtrhnVPQrGsGNn2Zsj725pR-wMTnPQTu2CHXU4KK-t-rsy2a9q6_eKMS4F54ng9T1B8ElEnNVoo0Hn9IR-iUpSymUjeZ2Q_Ig0SXAM2D9MAaLWBNSgjgmoNQEFVCWDU9urP3_40PTL8t8SMPm0txhUNDa5iZ0NaGbVefu_Cf8SGGcna7T7hgeMg1_ClDJQoGJqUB_XLViXAICQZCuwH6Pdr5k</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Chen, Guoli</creator><creator>Olson, Matthew Theodore</creator><creator>O'Neill, Alan</creator><creator>Norris, Alexis</creator><creator>Beierl, Katie</creator><creator>Harada, Shuko</creator><creator>Debeljak, Marija</creator><creator>Rivera-Roman, Keila</creator><creator>Finley, Samantha</creator><creator>Stafford, Amanda</creator><creator>Gocke, Christopher David</creator><creator>Lin, Ming-Tseh</creator><creator>Eshleman, James Richard</creator><general>Elsevier Inc</general><general>American Society for Investigative Pathology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120301</creationdate><title>A Virtual Pyrogram Generator to Resolve Complex Pyrosequencing Results</title><author>Chen, Guoli ; Olson, Matthew Theodore ; O'Neill, Alan ; Norris, Alexis ; Beierl, Katie ; Harada, Shuko ; Debeljak, Marija ; Rivera-Roman, Keila ; Finley, Samantha ; Stafford, Amanda ; Gocke, Christopher David ; Lin, Ming-Tseh ; Eshleman, James Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-16ff994b8e41029348a8f8a830be1c43e5865478db3153bdac8ba632afe833ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Codon - genetics</topic><topic>DNA Mutational Analysis - methods</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Mutation - genetics</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - pathology</topic><topic>Pathology</topic><topic>Proto-Oncogene Proteins - genetics</topic><topic>Proto-Oncogene Proteins B-raf - genetics</topic><topic>Proto-Oncogene Proteins p21(ras)</topic><topic>ras Proteins - genetics</topic><topic>Regular</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Guoli</creatorcontrib><creatorcontrib>Olson, Matthew Theodore</creatorcontrib><creatorcontrib>O'Neill, Alan</creatorcontrib><creatorcontrib>Norris, Alexis</creatorcontrib><creatorcontrib>Beierl, Katie</creatorcontrib><creatorcontrib>Harada, Shuko</creatorcontrib><creatorcontrib>Debeljak, Marija</creatorcontrib><creatorcontrib>Rivera-Roman, Keila</creatorcontrib><creatorcontrib>Finley, Samantha</creatorcontrib><creatorcontrib>Stafford, Amanda</creatorcontrib><creatorcontrib>Gocke, Christopher David</creatorcontrib><creatorcontrib>Lin, Ming-Tseh</creatorcontrib><creatorcontrib>Eshleman, James Richard</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of molecular diagnostics : JMD</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Guoli</au><au>Olson, Matthew Theodore</au><au>O'Neill, Alan</au><au>Norris, Alexis</au><au>Beierl, Katie</au><au>Harada, Shuko</au><au>Debeljak, Marija</au><au>Rivera-Roman, Keila</au><au>Finley, Samantha</au><au>Stafford, Amanda</au><au>Gocke, Christopher David</au><au>Lin, Ming-Tseh</au><au>Eshleman, James Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Virtual Pyrogram Generator to Resolve Complex Pyrosequencing Results</atitle><jtitle>The Journal of molecular diagnostics : JMD</jtitle><addtitle>J Mol Diagn</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>14</volume><issue>2</issue><spage>149</spage><epage>159</epage><pages>149-159</pages><issn>1525-1578</issn><eissn>1943-7811</eissn><abstract>We report a freely available software program, Pyromaker, which generates simulated traces for pyrosequencing results based on user inputs. Simulated pyrograms can aid in the analysis of complex pyrosequencing results in which various hypothesized mutations can be tested, and the resultant pyrograms can be matched with the actual pyrogram. We validated the software using the actual pyrograms for common KRAS gene mutations as well as several mutations in the BRAF , GNAS , and p53 genes. We demonstrate that all 18 possible single-base mutations within codons 12 and 13 of KRAS generate unique pyrosequencing traces and highlight the distinctions between them. We further show that all reported codon 12 and 13 complex mutations produce unique pyrograms. However, some complex mutations are indistinguishable from single-base mutations. For complicated pyrograms, Pyromaker was used in two modes, one in which hypothesis-based simulated pyrograms were pattern-matched with the actual pyrograms. In a second strategy with only the pyrogram, Pyromaker was used to identify the underlying mutation by iteratively reconstructing the mutant pyrogram. Either strategy was able to successfully identify the complex mutations, which were confirmed by cloning and sequencing. Using two examples of KRAS codon 12 mutations (specifically GGT→ TT T, G12F and GGT→G AG , G12E), we report which combinations of five approaches permit unambiguous mutation identification. The most efficient approach was found to be pyrosequencing with Pyromaker.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22316529</pmid><doi>10.1016/j.jmoldx.2011.12.001</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-1578 |
ispartof | The Journal of molecular diagnostics : JMD, 2012-03, Vol.14 (2), p.149-159 |
issn | 1525-1578 1943-7811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3349844 |
source | MEDLINE; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Codon - genetics DNA Mutational Analysis - methods High-Throughput Nucleotide Sequencing Humans Mutation - genetics Neoplasms - genetics Neoplasms - pathology Pathology Proto-Oncogene Proteins - genetics Proto-Oncogene Proteins B-raf - genetics Proto-Oncogene Proteins p21(ras) ras Proteins - genetics Regular Software |
title | A Virtual Pyrogram Generator to Resolve Complex Pyrosequencing Results |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T22%3A49%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Virtual%20Pyrogram%20Generator%20to%20Resolve%20Complex%20Pyrosequencing%20Results&rft.jtitle=The%20Journal%20of%20molecular%20diagnostics%20:%20JMD&rft.au=Chen,%20Guoli&rft.date=2012-03-01&rft.volume=14&rft.issue=2&rft.spage=149&rft.epage=159&rft.pages=149-159&rft.issn=1525-1578&rft.eissn=1943-7811&rft_id=info:doi/10.1016/j.jmoldx.2011.12.001&rft_dat=%3Cproquest_pubme%3E922497946%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922497946&rft_id=info:pmid/22316529&rft_els_id=1_s2_0_S1525157811003151&rfr_iscdi=true |