MicroRNA-mediated conversion of human fibroblasts to neurons
Neurons from fibroblasts Three papers in this issue demonstrate the production of functional induced neuronal (iN) cells from human fibroblasts, a procedure that holds great promise for regenerative medicine. Pang et al . show that a combination of the three transcription factors Ascl1 (also known a...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2011-08, Vol.476 (7359), p.228-231 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 231 |
---|---|
container_issue | 7359 |
container_start_page | 228 |
container_title | Nature (London) |
container_volume | 476 |
creator | Yoo, Andrew S. Sun, Alfred X. Li, Li Shcheglovitov, Aleksandr Portmann, Thomas Li, Yulong Lee-Messer, Chris Dolmetsch, Ricardo E. Tsien, Richard W. Crabtree, Gerald R. |
description | Neurons from fibroblasts
Three papers in this issue demonstrate the production of functional induced neuronal (iN) cells from human fibroblasts, a procedure that holds great promise for regenerative medicine. Pang
et al
. show that a combination of the three transcription factors
Ascl1
(also known as
Mash1
),
Brn2
(or
Pou3f2
) and
Myt1l
greatly enhances the neuronal differentiation of human embryonic stem cells. When combined with the basic helix–loop–helix transcription factor NeuroD1, these factors can also convert fetal and postnatal human fibroblasts into iN cells. Caiazzo
et al
. use a cocktail of three transcription factors to convert prenatal and adult mouse and human fibroblasts into functional dopaminergic neurons. The three are
Mash1
,
Nurr1
(or
Nr4a2
) and
Lmx1a
. Conversion is direct with no reversion to a progenitor cell stage, and it occurs in cells from Parkinson's disease patients as well as from healthy donors. Yoo
et al
. use an alternative approach. They show that microRNAs can have an instructive role in neural fate determination. Expression of miR-9/9* and miR-124 in human fibroblasts induces their conversion into functional neurons, and the process is facilitated by the addition of some neurogenic transcription factors.
Neurogenic transcription factors and evolutionarily conserved signalling pathways have been found to be instrumental in the formation of neurons
1
,
2
. However, the instructive role of microRNAs (miRNAs) in neurogenesis remains unexplored. We recently discovered that miR-9* and miR-124 instruct compositional changes of SWI/SNF-like BAF chromatin-remodelling complexes, a process important for neuronal differentiation and function
3
,
4
,
5
,
6
. Nearing mitotic exit of neural progenitors, miR-9* and miR-124 repress the BAF53a subunit of the neural-progenitor (np)BAF chromatin-remodelling complex. After mitotic exit, BAF53a is replaced by BAF53b, and BAF45a by BAF45b and BAF45c, which are then incorporated into neuron-specific (n)BAF complexes essential for post-mitotic functions
4
. Because miR-9/9* and miR-124 also control multiple genes regulating neuronal differentiation and function
5
,
7
,
8
,
9
,
10
,
11
,
12
,
13
, we proposed that these miRNAs might contribute to neuronal fates. Here we show that expression of miR-9/9* and miR-124 (miR-9/9*-124) in human fibroblasts induces their conversion into neurons, a process facilitated by
NEUROD2
. Further addition of neurogenic transcription factors
ASCL1
and
MYT1L
enha |
doi_str_mv | 10.1038/nature10323 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3348862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A264921956</galeid><sourcerecordid>A264921956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c748t-dba1e8afed38f1a26993325c1e8390d99b24a3adb22226baef0dd7660996fc5c3</originalsourceid><addsrcrecordid>eNpt0u9r1DAYB_Agipunr3wvZUNEtDO_miYgwjH8MZgKU1-HNH1yy-glt6Qd-t-bced2J9e-aEk--SZ9-iD0nOATgpl8F8w4JSivlD1Ah4S3ouZCtg_RIcZU1lgycYCe5HyFMW5Iyx-jA0rahrUNP0Tvv3qb4sW3eb2E3psR-srGcAMp-xiq6KrLaWlC5XyXYjeYPOZqjFWAKcWQn6JHzgwZnm2eM_Tr08efp1_q8--fz07n57VtuRzrvjMEpHHQM-mIoUIpxmhjyyBTuFeqo9ww03e0XKIz4HDft0JgpYSzjWUz9GGdu5q6ckwLYUxm0Kvklyb90dF4vTsT_KVexBvNGJdS0BLwahOQ4vUEedRLny0MgwkQp6ylZAwrqtoij_6TV3FKoXxdQVwSwko9Z-h4jRZmAO2Di2VXexup51RwRYlqRFH1HrWAAOWIMYDzZXjHH-3xduWv9TY62YPK3cPS272pr3cWFDPC73Fhppz12Y-LXftmbUtL5JzA3ZWYYH3ba3qr14p-sf1X7uy_5irg5QaYbM3gkgnW53vHOeaMN8W9XbtcpsIC0n3N9-37F_oE6Og</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884811308</pqid></control><display><type>article</type><title>MicroRNA-mediated conversion of human fibroblasts to neurons</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yoo, Andrew S. ; Sun, Alfred X. ; Li, Li ; Shcheglovitov, Aleksandr ; Portmann, Thomas ; Li, Yulong ; Lee-Messer, Chris ; Dolmetsch, Ricardo E. ; Tsien, Richard W. ; Crabtree, Gerald R.</creator><creatorcontrib>Yoo, Andrew S. ; Sun, Alfred X. ; Li, Li ; Shcheglovitov, Aleksandr ; Portmann, Thomas ; Li, Yulong ; Lee-Messer, Chris ; Dolmetsch, Ricardo E. ; Tsien, Richard W. ; Crabtree, Gerald R.</creatorcontrib><description>Neurons from fibroblasts
Three papers in this issue demonstrate the production of functional induced neuronal (iN) cells from human fibroblasts, a procedure that holds great promise for regenerative medicine. Pang
et al
. show that a combination of the three transcription factors
Ascl1
(also known as
Mash1
),
Brn2
(or
Pou3f2
) and
Myt1l
greatly enhances the neuronal differentiation of human embryonic stem cells. When combined with the basic helix–loop–helix transcription factor NeuroD1, these factors can also convert fetal and postnatal human fibroblasts into iN cells. Caiazzo
et al
. use a cocktail of three transcription factors to convert prenatal and adult mouse and human fibroblasts into functional dopaminergic neurons. The three are
Mash1
,
Nurr1
(or
Nr4a2
) and
Lmx1a
. Conversion is direct with no reversion to a progenitor cell stage, and it occurs in cells from Parkinson's disease patients as well as from healthy donors. Yoo
et al
. use an alternative approach. They show that microRNAs can have an instructive role in neural fate determination. Expression of miR-9/9* and miR-124 in human fibroblasts induces their conversion into functional neurons, and the process is facilitated by the addition of some neurogenic transcription factors.
Neurogenic transcription factors and evolutionarily conserved signalling pathways have been found to be instrumental in the formation of neurons
1
,
2
. However, the instructive role of microRNAs (miRNAs) in neurogenesis remains unexplored. We recently discovered that miR-9* and miR-124 instruct compositional changes of SWI/SNF-like BAF chromatin-remodelling complexes, a process important for neuronal differentiation and function
3
,
4
,
5
,
6
. Nearing mitotic exit of neural progenitors, miR-9* and miR-124 repress the BAF53a subunit of the neural-progenitor (np)BAF chromatin-remodelling complex. After mitotic exit, BAF53a is replaced by BAF53b, and BAF45a by BAF45b and BAF45c, which are then incorporated into neuron-specific (n)BAF complexes essential for post-mitotic functions
4
. Because miR-9/9* and miR-124 also control multiple genes regulating neuronal differentiation and function
5
,
7
,
8
,
9
,
10
,
11
,
12
,
13
, we proposed that these miRNAs might contribute to neuronal fates. Here we show that expression of miR-9/9* and miR-124 (miR-9/9*-124) in human fibroblasts induces their conversion into neurons, a process facilitated by
NEUROD2
. Further addition of neurogenic transcription factors
ASCL1
and
MYT1L
enhances the rate of conversion and the maturation of the converted neurons, whereas expression of these transcription factors alone without miR-9/9*-124 was ineffective. These studies indicate that the genetic circuitry involving miR-9/9*-124 can have an instructive role in neural fate determination.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature10323</identifier><identifier>PMID: 21753754</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/337/384/331 ; 631/378/2571/2578 ; Adult ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Biological and medical sciences ; Biomarkers - analysis ; Biomarkers - metabolism ; Cell cycle ; Cell Differentiation - genetics ; Cell Line ; Cell Lineage - genetics ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Excitatory Postsynaptic Potentials - physiology ; Fibroblasts ; Fibroblasts - cytology ; Fibroblasts - metabolism ; Fundamental and applied biological sciences. Psychology ; Genetic aspects ; Genomes ; Humanities and Social Sciences ; Humans ; Infant, Newborn ; letter ; MicroRNA ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Microtubule-Associated Proteins - analysis ; Microtubule-Associated Proteins - metabolism ; multidisciplinary ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Neurons ; Neurons - cytology ; Neurons - metabolism ; Neuropeptides - genetics ; Neuropeptides - metabolism ; Physiological aspects ; Science ; Science (multidisciplinary) ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Tubulin - analysis ; Tubulin - metabolism ; Vertebrates: nervous system and sense organs</subject><ispartof>Nature (London), 2011-08, Vol.476 (7359), p.228-231</ispartof><rights>Springer Nature Limited 2011</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2011 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 11, 2011</rights><rights>2011 Macmillan Publishers Limited. All rights reserved 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c748t-dba1e8afed38f1a26993325c1e8390d99b24a3adb22226baef0dd7660996fc5c3</citedby><cites>FETCH-LOGICAL-c748t-dba1e8afed38f1a26993325c1e8390d99b24a3adb22226baef0dd7660996fc5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature10323$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature10323$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27906,27907,41470,42539,51301</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24404345$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21753754$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoo, Andrew S.</creatorcontrib><creatorcontrib>Sun, Alfred X.</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Shcheglovitov, Aleksandr</creatorcontrib><creatorcontrib>Portmann, Thomas</creatorcontrib><creatorcontrib>Li, Yulong</creatorcontrib><creatorcontrib>Lee-Messer, Chris</creatorcontrib><creatorcontrib>Dolmetsch, Ricardo E.</creatorcontrib><creatorcontrib>Tsien, Richard W.</creatorcontrib><creatorcontrib>Crabtree, Gerald R.</creatorcontrib><title>MicroRNA-mediated conversion of human fibroblasts to neurons</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Neurons from fibroblasts
Three papers in this issue demonstrate the production of functional induced neuronal (iN) cells from human fibroblasts, a procedure that holds great promise for regenerative medicine. Pang
et al
. show that a combination of the three transcription factors
Ascl1
(also known as
Mash1
),
Brn2
(or
Pou3f2
) and
Myt1l
greatly enhances the neuronal differentiation of human embryonic stem cells. When combined with the basic helix–loop–helix transcription factor NeuroD1, these factors can also convert fetal and postnatal human fibroblasts into iN cells. Caiazzo
et al
. use a cocktail of three transcription factors to convert prenatal and adult mouse and human fibroblasts into functional dopaminergic neurons. The three are
Mash1
,
Nurr1
(or
Nr4a2
) and
Lmx1a
. Conversion is direct with no reversion to a progenitor cell stage, and it occurs in cells from Parkinson's disease patients as well as from healthy donors. Yoo
et al
. use an alternative approach. They show that microRNAs can have an instructive role in neural fate determination. Expression of miR-9/9* and miR-124 in human fibroblasts induces their conversion into functional neurons, and the process is facilitated by the addition of some neurogenic transcription factors.
Neurogenic transcription factors and evolutionarily conserved signalling pathways have been found to be instrumental in the formation of neurons
1
,
2
. However, the instructive role of microRNAs (miRNAs) in neurogenesis remains unexplored. We recently discovered that miR-9* and miR-124 instruct compositional changes of SWI/SNF-like BAF chromatin-remodelling complexes, a process important for neuronal differentiation and function
3
,
4
,
5
,
6
. Nearing mitotic exit of neural progenitors, miR-9* and miR-124 repress the BAF53a subunit of the neural-progenitor (np)BAF chromatin-remodelling complex. After mitotic exit, BAF53a is replaced by BAF53b, and BAF45a by BAF45b and BAF45c, which are then incorporated into neuron-specific (n)BAF complexes essential for post-mitotic functions
4
. Because miR-9/9* and miR-124 also control multiple genes regulating neuronal differentiation and function
5
,
7
,
8
,
9
,
10
,
11
,
12
,
13
, we proposed that these miRNAs might contribute to neuronal fates. Here we show that expression of miR-9/9* and miR-124 (miR-9/9*-124) in human fibroblasts induces their conversion into neurons, a process facilitated by
NEUROD2
. Further addition of neurogenic transcription factors
ASCL1
and
MYT1L
enhances the rate of conversion and the maturation of the converted neurons, whereas expression of these transcription factors alone without miR-9/9*-124 was ineffective. These studies indicate that the genetic circuitry involving miR-9/9*-124 can have an instructive role in neural fate determination.</description><subject>631/337/384/331</subject><subject>631/378/2571/2578</subject><subject>Adult</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Biological and medical sciences</subject><subject>Biomarkers - analysis</subject><subject>Biomarkers - metabolism</subject><subject>Cell cycle</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Line</subject><subject>Cell Lineage - genetics</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Fibroblasts</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Infant, Newborn</subject><subject>letter</subject><subject>MicroRNA</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Microtubule-Associated Proteins - analysis</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>multidisciplinary</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Neuropeptides - genetics</subject><subject>Neuropeptides - metabolism</subject><subject>Physiological aspects</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Tubulin - analysis</subject><subject>Tubulin - metabolism</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpt0u9r1DAYB_Agipunr3wvZUNEtDO_miYgwjH8MZgKU1-HNH1yy-glt6Qd-t-bced2J9e-aEk--SZ9-iD0nOATgpl8F8w4JSivlD1Ah4S3ouZCtg_RIcZU1lgycYCe5HyFMW5Iyx-jA0rahrUNP0Tvv3qb4sW3eb2E3psR-srGcAMp-xiq6KrLaWlC5XyXYjeYPOZqjFWAKcWQn6JHzgwZnm2eM_Tr08efp1_q8--fz07n57VtuRzrvjMEpHHQM-mIoUIpxmhjyyBTuFeqo9ww03e0XKIz4HDft0JgpYSzjWUz9GGdu5q6ckwLYUxm0Kvklyb90dF4vTsT_KVexBvNGJdS0BLwahOQ4vUEedRLny0MgwkQp6ylZAwrqtoij_6TV3FKoXxdQVwSwko9Z-h4jRZmAO2Di2VXexup51RwRYlqRFH1HrWAAOWIMYDzZXjHH-3xduWv9TY62YPK3cPS272pr3cWFDPC73Fhppz12Y-LXftmbUtL5JzA3ZWYYH3ba3qr14p-sf1X7uy_5irg5QaYbM3gkgnW53vHOeaMN8W9XbtcpsIC0n3N9-37F_oE6Og</recordid><startdate>20110811</startdate><enddate>20110811</enddate><creator>Yoo, Andrew S.</creator><creator>Sun, Alfred X.</creator><creator>Li, Li</creator><creator>Shcheglovitov, Aleksandr</creator><creator>Portmann, Thomas</creator><creator>Li, Yulong</creator><creator>Lee-Messer, Chris</creator><creator>Dolmetsch, Ricardo E.</creator><creator>Tsien, Richard W.</creator><creator>Crabtree, Gerald R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110811</creationdate><title>MicroRNA-mediated conversion of human fibroblasts to neurons</title><author>Yoo, Andrew S. ; Sun, Alfred X. ; Li, Li ; Shcheglovitov, Aleksandr ; Portmann, Thomas ; Li, Yulong ; Lee-Messer, Chris ; Dolmetsch, Ricardo E. ; Tsien, Richard W. ; Crabtree, Gerald R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c748t-dba1e8afed38f1a26993325c1e8390d99b24a3adb22226baef0dd7660996fc5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>631/337/384/331</topic><topic>631/378/2571/2578</topic><topic>Adult</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Biological and medical sciences</topic><topic>Biomarkers - analysis</topic><topic>Biomarkers - metabolism</topic><topic>Cell cycle</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Line</topic><topic>Cell Lineage - genetics</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Fibroblasts</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Infant, Newborn</topic><topic>letter</topic><topic>MicroRNA</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Microtubule-Associated Proteins - analysis</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>multidisciplinary</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Neuropeptides - genetics</topic><topic>Neuropeptides - metabolism</topic><topic>Physiological aspects</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Tubulin - analysis</topic><topic>Tubulin - metabolism</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoo, Andrew S.</creatorcontrib><creatorcontrib>Sun, Alfred X.</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Shcheglovitov, Aleksandr</creatorcontrib><creatorcontrib>Portmann, Thomas</creatorcontrib><creatorcontrib>Li, Yulong</creatorcontrib><creatorcontrib>Lee-Messer, Chris</creatorcontrib><creatorcontrib>Dolmetsch, Ricardo E.</creatorcontrib><creatorcontrib>Tsien, Richard W.</creatorcontrib><creatorcontrib>Crabtree, Gerald R.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoo, Andrew S.</au><au>Sun, Alfred X.</au><au>Li, Li</au><au>Shcheglovitov, Aleksandr</au><au>Portmann, Thomas</au><au>Li, Yulong</au><au>Lee-Messer, Chris</au><au>Dolmetsch, Ricardo E.</au><au>Tsien, Richard W.</au><au>Crabtree, Gerald R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MicroRNA-mediated conversion of human fibroblasts to neurons</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2011-08-11</date><risdate>2011</risdate><volume>476</volume><issue>7359</issue><spage>228</spage><epage>231</epage><pages>228-231</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Neurons from fibroblasts
Three papers in this issue demonstrate the production of functional induced neuronal (iN) cells from human fibroblasts, a procedure that holds great promise for regenerative medicine. Pang
et al
. show that a combination of the three transcription factors
Ascl1
(also known as
Mash1
),
Brn2
(or
Pou3f2
) and
Myt1l
greatly enhances the neuronal differentiation of human embryonic stem cells. When combined with the basic helix–loop–helix transcription factor NeuroD1, these factors can also convert fetal and postnatal human fibroblasts into iN cells. Caiazzo
et al
. use a cocktail of three transcription factors to convert prenatal and adult mouse and human fibroblasts into functional dopaminergic neurons. The three are
Mash1
,
Nurr1
(or
Nr4a2
) and
Lmx1a
. Conversion is direct with no reversion to a progenitor cell stage, and it occurs in cells from Parkinson's disease patients as well as from healthy donors. Yoo
et al
. use an alternative approach. They show that microRNAs can have an instructive role in neural fate determination. Expression of miR-9/9* and miR-124 in human fibroblasts induces their conversion into functional neurons, and the process is facilitated by the addition of some neurogenic transcription factors.
Neurogenic transcription factors and evolutionarily conserved signalling pathways have been found to be instrumental in the formation of neurons
1
,
2
. However, the instructive role of microRNAs (miRNAs) in neurogenesis remains unexplored. We recently discovered that miR-9* and miR-124 instruct compositional changes of SWI/SNF-like BAF chromatin-remodelling complexes, a process important for neuronal differentiation and function
3
,
4
,
5
,
6
. Nearing mitotic exit of neural progenitors, miR-9* and miR-124 repress the BAF53a subunit of the neural-progenitor (np)BAF chromatin-remodelling complex. After mitotic exit, BAF53a is replaced by BAF53b, and BAF45a by BAF45b and BAF45c, which are then incorporated into neuron-specific (n)BAF complexes essential for post-mitotic functions
4
. Because miR-9/9* and miR-124 also control multiple genes regulating neuronal differentiation and function
5
,
7
,
8
,
9
,
10
,
11
,
12
,
13
, we proposed that these miRNAs might contribute to neuronal fates. Here we show that expression of miR-9/9* and miR-124 (miR-9/9*-124) in human fibroblasts induces their conversion into neurons, a process facilitated by
NEUROD2
. Further addition of neurogenic transcription factors
ASCL1
and
MYT1L
enhances the rate of conversion and the maturation of the converted neurons, whereas expression of these transcription factors alone without miR-9/9*-124 was ineffective. These studies indicate that the genetic circuitry involving miR-9/9*-124 can have an instructive role in neural fate determination.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>21753754</pmid><doi>10.1038/nature10323</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2011-08, Vol.476 (7359), p.228-231 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3348862 |
source | MEDLINE; Nature; SpringerLink Journals - AutoHoldings |
subjects | 631/337/384/331 631/378/2571/2578 Adult Basic Helix-Loop-Helix Transcription Factors - genetics Basic Helix-Loop-Helix Transcription Factors - metabolism Biological and medical sciences Biomarkers - analysis Biomarkers - metabolism Cell cycle Cell Differentiation - genetics Cell Line Cell Lineage - genetics DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Excitatory Postsynaptic Potentials - physiology Fibroblasts Fibroblasts - cytology Fibroblasts - metabolism Fundamental and applied biological sciences. Psychology Genetic aspects Genomes Humanities and Social Sciences Humans Infant, Newborn letter MicroRNA MicroRNAs - genetics MicroRNAs - metabolism Microtubule-Associated Proteins - analysis Microtubule-Associated Proteins - metabolism multidisciplinary Nerve Tissue Proteins - genetics Nerve Tissue Proteins - metabolism Neurons Neurons - cytology Neurons - metabolism Neuropeptides - genetics Neuropeptides - metabolism Physiological aspects Science Science (multidisciplinary) Transcription Factors - genetics Transcription Factors - metabolism Tubulin - analysis Tubulin - metabolism Vertebrates: nervous system and sense organs |
title | MicroRNA-mediated conversion of human fibroblasts to neurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A56%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MicroRNA-mediated%20conversion%20of%20human%20fibroblasts%20to%20neurons&rft.jtitle=Nature%20(London)&rft.au=Yoo,%20Andrew%20S.&rft.date=2011-08-11&rft.volume=476&rft.issue=7359&rft.spage=228&rft.epage=231&rft.pages=228-231&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature10323&rft_dat=%3Cgale_pubme%3EA264921956%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884811308&rft_id=info:pmid/21753754&rft_galeid=A264921956&rfr_iscdi=true |