In Vitro Validation of Real-Time Three-Dimensional Color Doppler Echocardiography for Direct Measurement of Proximal Isovelocity Surface Area in Mitral Regurgitation

The 2-dimensional (2D) color Doppler (2D-CD) proximal isovelocity surface area (PISA) method assumes a hemispheric flow convergence zone to estimate transvalvular flow. Recently developed 3-dimensional (3D)-CD can directly visualize PISA shape and surface area without geometric assumptions. To valid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American journal of cardiology 2007-05, Vol.99 (10), p.1440-1447
Hauptverfasser: Little, Stephen H., MD, Igo, Stephen R, Pirat, Bahar, MD, McCulloch, Marti, Hartley, Craig J., PhD, Nosé, Yukihiko, MD, PhD, Zoghbi, William A., MD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1447
container_issue 10
container_start_page 1440
container_title The American journal of cardiology
container_volume 99
creator Little, Stephen H., MD
Igo, Stephen R
Pirat, Bahar, MD
McCulloch, Marti
Hartley, Craig J., PhD
Nosé, Yukihiko, MD, PhD
Zoghbi, William A., MD
description The 2-dimensional (2D) color Doppler (2D-CD) proximal isovelocity surface area (PISA) method assumes a hemispheric flow convergence zone to estimate transvalvular flow. Recently developed 3-dimensional (3D)-CD can directly visualize PISA shape and surface area without geometric assumptions. To validate a novel method to directly measure PISA using real-time 3D-CD echocardiography, a circulatory loop with an ultrasound imaging chamber was created to model mitral regurgitation (MR). Thirty-two different regurgitant flow conditions were tested using symmetric and asymmetric flow orifices. Three-dimensional–PISA was reconstructed from a hand-held real-time 3D-CD data set. Regurgitant volume was derived using both 2D-CD and 3D-CD PISA methods, and each was compared against a flow-meter standard. The circulatory loop achieved regurgitant volume within the clinical range of MR (11 to 84 ml). Three-dimensional–PISA geometry reflected the 2D geometry of the regurgitant orifice. Correlation between the 2D-PISA method regurgitant volume and actual regurgitant volume was significant (r2 = 0.47, p
doi_str_mv 10.1016/j.amjcard.2006.12.079
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3348701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0002914907002718</els_id><sourcerecordid>1269813121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c613t-c6e3cf08ab85810f2b844dc0ab5418907a45b85c4c99c7c3fec4e8e451f5dd523</originalsourceid><addsrcrecordid>eNqFUsFuEzEQXSEQDYVPAFkcuG2w19717qWoSluI1ArUhl4txzubODjrYO9G5IP6n8wmUYFeuNhjzZvnNzMvSd4yOmaUFR9XY71eGR3qcUZpMWbZmMrqWTJipaxSVjH-PBlRSrO0YqI6SV7FuMInY3nxMjlhUlRcyGKUPExbcm-74Mm9drbWnfUt8Q25Be3SmV0DmS0DQHqBYRsxqR2ZeOcDufCbjYNALs3SDzqsXwS9We5IMyRtANORG9CxD4Cl3UD6Lfhfdo0M0-i34Lyx3Y7c9aHRBsh5AE1sS25QDUJuYdGHhe32il4nLxrtIrw53qfJ96vL2eRLev3183Ryfp2agvEOT-CmoaWel3nJaJPNSyFqQ_U8F6ysqNQix5QRpqqMNLwBI6AEkbMmr-s846fJ2YF308_XUBvUjVrUJqDqsFNeW_VvprVLtfBbxbkoJWVI8OFIEPzPHmKn1jYacE634PuoJBUlKzKOwPdPgCvfB5xuVBmnXNJqD8oPIBN8jAGaRyWMqsEFaqWOLlCDCxTLFLoA69793cafquPaEfDpAAAc5tZCUNFYaA3U-72p2tv_fnH2hME421qj3Q_YQXxshqmIBepusOLgRCoxkKzkvwGE998E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230370923</pqid></control><display><type>article</type><title>In Vitro Validation of Real-Time Three-Dimensional Color Doppler Echocardiography for Direct Measurement of Proximal Isovelocity Surface Area in Mitral Regurgitation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Little, Stephen H., MD ; Igo, Stephen R ; Pirat, Bahar, MD ; McCulloch, Marti ; Hartley, Craig J., PhD ; Nosé, Yukihiko, MD, PhD ; Zoghbi, William A., MD</creator><creatorcontrib>Little, Stephen H., MD ; Igo, Stephen R ; Pirat, Bahar, MD ; McCulloch, Marti ; Hartley, Craig J., PhD ; Nosé, Yukihiko, MD, PhD ; Zoghbi, William A., MD</creatorcontrib><description>The 2-dimensional (2D) color Doppler (2D-CD) proximal isovelocity surface area (PISA) method assumes a hemispheric flow convergence zone to estimate transvalvular flow. Recently developed 3-dimensional (3D)-CD can directly visualize PISA shape and surface area without geometric assumptions. To validate a novel method to directly measure PISA using real-time 3D-CD echocardiography, a circulatory loop with an ultrasound imaging chamber was created to model mitral regurgitation (MR). Thirty-two different regurgitant flow conditions were tested using symmetric and asymmetric flow orifices. Three-dimensional–PISA was reconstructed from a hand-held real-time 3D-CD data set. Regurgitant volume was derived using both 2D-CD and 3D-CD PISA methods, and each was compared against a flow-meter standard. The circulatory loop achieved regurgitant volume within the clinical range of MR (11 to 84 ml). Three-dimensional–PISA geometry reflected the 2D geometry of the regurgitant orifice. Correlation between the 2D-PISA method regurgitant volume and actual regurgitant volume was significant (r2 = 0.47, p &lt;0.001). Mean 2D-PISA regurgitant volume underestimate was 19.1 ± 25 ml (2 SDs). For the 3D-PISA method, correlation with actual regurgitant volume was significant (r2 = 0.92, p &lt;0.001), with a mean regurgitant volume underestimate of 2.7 ± 10 ml (2 SDs). The 3D-PISA method showed less regurgitant volume underestimation for all orifice shapes and regurgitant volumes tested. In conclusion, in an in vitro model of MR, 3D-CD was used to directly measure PISA without geometric assumption. Compared with conventional 2D-PISA, regurgitant volume was more accurate when derived from 3D-PISA across symmetric and asymmetric orifices within a broad range of hemodynamic flow conditions.</description><identifier>ISSN: 0002-9149</identifier><identifier>EISSN: 1879-1913</identifier><identifier>DOI: 10.1016/j.amjcard.2006.12.079</identifier><identifier>PMID: 17493476</identifier><identifier>CODEN: AJCDAG</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Blood Flow Velocity ; Cardiology ; Cardiovascular ; Cardiovascular disease ; Computer Systems ; Echocardiography, Doppler, Color - methods ; Echocardiography, Three-Dimensional - methods ; Equipment Design ; Heart ; Humans ; Image Interpretation, Computer-Assisted ; Image Processing, Computer-Assisted ; Linear Models ; Mitral Valve Insufficiency - diagnostic imaging ; Mitral Valve Insufficiency - physiopathology ; Observer Variation ; Research Design ; Ultrasonic imaging</subject><ispartof>The American journal of cardiology, 2007-05, Vol.99 (10), p.1440-1447</ispartof><rights>Elsevier Inc.</rights><rights>2007 Elsevier Inc.</rights><rights>Copyright Elsevier Sequoia S.A. May 15, 2007</rights><rights>2007 Elsevier Inc. All rights reserved. 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c613t-c6e3cf08ab85810f2b844dc0ab5418907a45b85c4c99c7c3fec4e8e451f5dd523</citedby><cites>FETCH-LOGICAL-c613t-c6e3cf08ab85810f2b844dc0ab5418907a45b85c4c99c7c3fec4e8e451f5dd523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0002914907002718$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17493476$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Little, Stephen H., MD</creatorcontrib><creatorcontrib>Igo, Stephen R</creatorcontrib><creatorcontrib>Pirat, Bahar, MD</creatorcontrib><creatorcontrib>McCulloch, Marti</creatorcontrib><creatorcontrib>Hartley, Craig J., PhD</creatorcontrib><creatorcontrib>Nosé, Yukihiko, MD, PhD</creatorcontrib><creatorcontrib>Zoghbi, William A., MD</creatorcontrib><title>In Vitro Validation of Real-Time Three-Dimensional Color Doppler Echocardiography for Direct Measurement of Proximal Isovelocity Surface Area in Mitral Regurgitation</title><title>The American journal of cardiology</title><addtitle>Am J Cardiol</addtitle><description>The 2-dimensional (2D) color Doppler (2D-CD) proximal isovelocity surface area (PISA) method assumes a hemispheric flow convergence zone to estimate transvalvular flow. Recently developed 3-dimensional (3D)-CD can directly visualize PISA shape and surface area without geometric assumptions. To validate a novel method to directly measure PISA using real-time 3D-CD echocardiography, a circulatory loop with an ultrasound imaging chamber was created to model mitral regurgitation (MR). Thirty-two different regurgitant flow conditions were tested using symmetric and asymmetric flow orifices. Three-dimensional–PISA was reconstructed from a hand-held real-time 3D-CD data set. Regurgitant volume was derived using both 2D-CD and 3D-CD PISA methods, and each was compared against a flow-meter standard. The circulatory loop achieved regurgitant volume within the clinical range of MR (11 to 84 ml). Three-dimensional–PISA geometry reflected the 2D geometry of the regurgitant orifice. Correlation between the 2D-PISA method regurgitant volume and actual regurgitant volume was significant (r2 = 0.47, p &lt;0.001). Mean 2D-PISA regurgitant volume underestimate was 19.1 ± 25 ml (2 SDs). For the 3D-PISA method, correlation with actual regurgitant volume was significant (r2 = 0.92, p &lt;0.001), with a mean regurgitant volume underestimate of 2.7 ± 10 ml (2 SDs). The 3D-PISA method showed less regurgitant volume underestimation for all orifice shapes and regurgitant volumes tested. In conclusion, in an in vitro model of MR, 3D-CD was used to directly measure PISA without geometric assumption. Compared with conventional 2D-PISA, regurgitant volume was more accurate when derived from 3D-PISA across symmetric and asymmetric orifices within a broad range of hemodynamic flow conditions.</description><subject>Blood Flow Velocity</subject><subject>Cardiology</subject><subject>Cardiovascular</subject><subject>Cardiovascular disease</subject><subject>Computer Systems</subject><subject>Echocardiography, Doppler, Color - methods</subject><subject>Echocardiography, Three-Dimensional - methods</subject><subject>Equipment Design</subject><subject>Heart</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Image Processing, Computer-Assisted</subject><subject>Linear Models</subject><subject>Mitral Valve Insufficiency - diagnostic imaging</subject><subject>Mitral Valve Insufficiency - physiopathology</subject><subject>Observer Variation</subject><subject>Research Design</subject><subject>Ultrasonic imaging</subject><issn>0002-9149</issn><issn>1879-1913</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUsFuEzEQXSEQDYVPAFkcuG2w19717qWoSluI1ArUhl4txzubODjrYO9G5IP6n8wmUYFeuNhjzZvnNzMvSd4yOmaUFR9XY71eGR3qcUZpMWbZmMrqWTJipaxSVjH-PBlRSrO0YqI6SV7FuMInY3nxMjlhUlRcyGKUPExbcm-74Mm9drbWnfUt8Q25Be3SmV0DmS0DQHqBYRsxqR2ZeOcDufCbjYNALs3SDzqsXwS9We5IMyRtANORG9CxD4Cl3UD6Lfhfdo0M0-i34Lyx3Y7c9aHRBsh5AE1sS25QDUJuYdGHhe32il4nLxrtIrw53qfJ96vL2eRLev3183Ryfp2agvEOT-CmoaWel3nJaJPNSyFqQ_U8F6ysqNQix5QRpqqMNLwBI6AEkbMmr-s846fJ2YF308_XUBvUjVrUJqDqsFNeW_VvprVLtfBbxbkoJWVI8OFIEPzPHmKn1jYacE634PuoJBUlKzKOwPdPgCvfB5xuVBmnXNJqD8oPIBN8jAGaRyWMqsEFaqWOLlCDCxTLFLoA69793cafquPaEfDpAAAc5tZCUNFYaA3U-72p2tv_fnH2hME421qj3Q_YQXxshqmIBepusOLgRCoxkKzkvwGE998E</recordid><startdate>20070515</startdate><enddate>20070515</enddate><creator>Little, Stephen H., MD</creator><creator>Igo, Stephen R</creator><creator>Pirat, Bahar, MD</creator><creator>McCulloch, Marti</creator><creator>Hartley, Craig J., PhD</creator><creator>Nosé, Yukihiko, MD, PhD</creator><creator>Zoghbi, William A., MD</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TS</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070515</creationdate><title>In Vitro Validation of Real-Time Three-Dimensional Color Doppler Echocardiography for Direct Measurement of Proximal Isovelocity Surface Area in Mitral Regurgitation</title><author>Little, Stephen H., MD ; Igo, Stephen R ; Pirat, Bahar, MD ; McCulloch, Marti ; Hartley, Craig J., PhD ; Nosé, Yukihiko, MD, PhD ; Zoghbi, William A., MD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c613t-c6e3cf08ab85810f2b844dc0ab5418907a45b85c4c99c7c3fec4e8e451f5dd523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Blood Flow Velocity</topic><topic>Cardiology</topic><topic>Cardiovascular</topic><topic>Cardiovascular disease</topic><topic>Computer Systems</topic><topic>Echocardiography, Doppler, Color - methods</topic><topic>Echocardiography, Three-Dimensional - methods</topic><topic>Equipment Design</topic><topic>Heart</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Image Processing, Computer-Assisted</topic><topic>Linear Models</topic><topic>Mitral Valve Insufficiency - diagnostic imaging</topic><topic>Mitral Valve Insufficiency - physiopathology</topic><topic>Observer Variation</topic><topic>Research Design</topic><topic>Ultrasonic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Little, Stephen H., MD</creatorcontrib><creatorcontrib>Igo, Stephen R</creatorcontrib><creatorcontrib>Pirat, Bahar, MD</creatorcontrib><creatorcontrib>McCulloch, Marti</creatorcontrib><creatorcontrib>Hartley, Craig J., PhD</creatorcontrib><creatorcontrib>Nosé, Yukihiko, MD, PhD</creatorcontrib><creatorcontrib>Zoghbi, William A., MD</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Physical Education Index</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The American journal of cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Little, Stephen H., MD</au><au>Igo, Stephen R</au><au>Pirat, Bahar, MD</au><au>McCulloch, Marti</au><au>Hartley, Craig J., PhD</au><au>Nosé, Yukihiko, MD, PhD</au><au>Zoghbi, William A., MD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Vitro Validation of Real-Time Three-Dimensional Color Doppler Echocardiography for Direct Measurement of Proximal Isovelocity Surface Area in Mitral Regurgitation</atitle><jtitle>The American journal of cardiology</jtitle><addtitle>Am J Cardiol</addtitle><date>2007-05-15</date><risdate>2007</risdate><volume>99</volume><issue>10</issue><spage>1440</spage><epage>1447</epage><pages>1440-1447</pages><issn>0002-9149</issn><eissn>1879-1913</eissn><coden>AJCDAG</coden><abstract>The 2-dimensional (2D) color Doppler (2D-CD) proximal isovelocity surface area (PISA) method assumes a hemispheric flow convergence zone to estimate transvalvular flow. Recently developed 3-dimensional (3D)-CD can directly visualize PISA shape and surface area without geometric assumptions. To validate a novel method to directly measure PISA using real-time 3D-CD echocardiography, a circulatory loop with an ultrasound imaging chamber was created to model mitral regurgitation (MR). Thirty-two different regurgitant flow conditions were tested using symmetric and asymmetric flow orifices. Three-dimensional–PISA was reconstructed from a hand-held real-time 3D-CD data set. Regurgitant volume was derived using both 2D-CD and 3D-CD PISA methods, and each was compared against a flow-meter standard. The circulatory loop achieved regurgitant volume within the clinical range of MR (11 to 84 ml). Three-dimensional–PISA geometry reflected the 2D geometry of the regurgitant orifice. Correlation between the 2D-PISA method regurgitant volume and actual regurgitant volume was significant (r2 = 0.47, p &lt;0.001). Mean 2D-PISA regurgitant volume underestimate was 19.1 ± 25 ml (2 SDs). For the 3D-PISA method, correlation with actual regurgitant volume was significant (r2 = 0.92, p &lt;0.001), with a mean regurgitant volume underestimate of 2.7 ± 10 ml (2 SDs). The 3D-PISA method showed less regurgitant volume underestimation for all orifice shapes and regurgitant volumes tested. In conclusion, in an in vitro model of MR, 3D-CD was used to directly measure PISA without geometric assumption. Compared with conventional 2D-PISA, regurgitant volume was more accurate when derived from 3D-PISA across symmetric and asymmetric orifices within a broad range of hemodynamic flow conditions.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>17493476</pmid><doi>10.1016/j.amjcard.2006.12.079</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9149
ispartof The American journal of cardiology, 2007-05, Vol.99 (10), p.1440-1447
issn 0002-9149
1879-1913
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3348701
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Blood Flow Velocity
Cardiology
Cardiovascular
Cardiovascular disease
Computer Systems
Echocardiography, Doppler, Color - methods
Echocardiography, Three-Dimensional - methods
Equipment Design
Heart
Humans
Image Interpretation, Computer-Assisted
Image Processing, Computer-Assisted
Linear Models
Mitral Valve Insufficiency - diagnostic imaging
Mitral Valve Insufficiency - physiopathology
Observer Variation
Research Design
Ultrasonic imaging
title In Vitro Validation of Real-Time Three-Dimensional Color Doppler Echocardiography for Direct Measurement of Proximal Isovelocity Surface Area in Mitral Regurgitation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A41%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Vitro%20Validation%20of%20Real-Time%20Three-Dimensional%20Color%20Doppler%20Echocardiography%20for%20Direct%20Measurement%20of%20Proximal%20Isovelocity%20Surface%20Area%20in%20Mitral%20Regurgitation&rft.jtitle=The%20American%20journal%20of%20cardiology&rft.au=Little,%20Stephen%20H.,%20MD&rft.date=2007-05-15&rft.volume=99&rft.issue=10&rft.spage=1440&rft.epage=1447&rft.pages=1440-1447&rft.issn=0002-9149&rft.eissn=1879-1913&rft.coden=AJCDAG&rft_id=info:doi/10.1016/j.amjcard.2006.12.079&rft_dat=%3Cproquest_pubme%3E1269813121%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230370923&rft_id=info:pmid/17493476&rft_els_id=S0002914907002718&rfr_iscdi=true