Personal Omics Profiling Reveals Dynamic Molecular and Medical Phenotypes

Personalized medicine is expected to benefit from combining genomic information with regular monitoring of physiological states by multiple high-throughput methods. Here, we present an integrative personal omics profile (iPOP), an analysis that combines genomic, transcriptomic, proteomic, metabolomi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2012-03, Vol.148 (6), p.1293-1307
Hauptverfasser: Chen, Rui, Mias, George I., Li-Pook-Than, Jennifer, Jiang, Lihua, Lam, Hugo Y.K., Chen, Rong, Miriami, Elana, Karczewski, Konrad J., Hariharan, Manoj, Dewey, Frederick E., Cheng, Yong, Clark, Michael J., Im, Hogune, Habegger, Lukas, Balasubramanian, Suganthi, O'Huallachain, Maeve, Dudley, Joel T., Hillenmeyer, Sara, Haraksingh, Rajini, Sharon, Donald, Euskirchen, Ghia, Lacroute, Phil, Bettinger, Keith, Boyle, Alan P., Kasowski, Maya, Grubert, Fabian, Seki, Scott, Garcia, Marco, Whirl-Carrillo, Michelle, Gallardo, Mercedes, Blasco, Maria A., Greenberg, Peter L., Snyder, Phyllis, Klein, Teri E., Altman, Russ B., Butte, Atul J., Ashley, Euan A., Gerstein, Mark, Nadeau, Kari C., Tang, Hua, Snyder, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1307
container_issue 6
container_start_page 1293
container_title Cell
container_volume 148
creator Chen, Rui
Mias, George I.
Li-Pook-Than, Jennifer
Jiang, Lihua
Lam, Hugo Y.K.
Chen, Rong
Miriami, Elana
Karczewski, Konrad J.
Hariharan, Manoj
Dewey, Frederick E.
Cheng, Yong
Clark, Michael J.
Im, Hogune
Habegger, Lukas
Balasubramanian, Suganthi
O'Huallachain, Maeve
Dudley, Joel T.
Hillenmeyer, Sara
Haraksingh, Rajini
Sharon, Donald
Euskirchen, Ghia
Lacroute, Phil
Bettinger, Keith
Boyle, Alan P.
Kasowski, Maya
Grubert, Fabian
Seki, Scott
Garcia, Marco
Whirl-Carrillo, Michelle
Gallardo, Mercedes
Blasco, Maria A.
Greenberg, Peter L.
Snyder, Phyllis
Klein, Teri E.
Altman, Russ B.
Butte, Atul J.
Ashley, Euan A.
Gerstein, Mark
Nadeau, Kari C.
Tang, Hua
Snyder, Michael
description Personalized medicine is expected to benefit from combining genomic information with regular monitoring of physiological states by multiple high-throughput methods. Here, we present an integrative personal omics profile (iPOP), an analysis that combines genomic, transcriptomic, proteomic, metabolomic, and autoantibody profiles from a single individual over a 14 month period. Our iPOP analysis revealed various medical risks, including type 2 diabetes. It also uncovered extensive, dynamic changes in diverse molecular components and biological pathways across healthy and diseased conditions. Extremely high-coverage genomic and transcriptomic data, which provide the basis of our iPOP, revealed extensive heteroallelic changes during healthy and diseased states and an unexpected RNA editing mechanism. This study demonstrates that longitudinal iPOP can be used to interpret healthy and diseased states by connecting genomic information with additional dynamic omics activity. [Display omitted] ► Physiological states analyzed by integrative personal omics profiling ► Extensive molecular changes revealed during different health states ► Individual disease risk predicted from integrated omics data ► Extensive heteroallele and RNA editing during healthy and disease states A personalized medicine pilot study samples a patient's transcriptome, proteome, and metabolome multiple times over the course of 14 months and integrates this information with whole-genome sequence data to predict risk and provide a comprehensive view of healthy and disease states, including two viral infections and the onset of type 2 diabetes.
doi_str_mv 10.1016/j.cell.2012.02.009
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3341616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867412001663</els_id><sourcerecordid>929120216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-9fb7cd015592b5e8a43f8626eca446b3f38e9c43abbcdb38ce7a7fdb05d835c43</originalsourceid><addsrcrecordid>eNp9kV1rFDEUhoModtv6B7zQudOb2eZj8gUiSLW10NJF7XXIZM5ss8wmazK7sP--GbcWvSkJBHKe983JeRF6S_CcYCLOVnMHwzCnmNA5LhvrF2hGsJZ1QyR9iWblhtZKyOYIHee8whgrzvlrdERpUxYTM3S1gJRjsEN1u_YuV4sUez_4sKx-wA7skKuv-2BLqbqJA7jtYFNlQ1fdQOddUS3uIcRxv4F8il71hYc3j-cJurv49uv8e319e3l1_uW6dlzKsdZ9K12HCeeathyUbVivBBXgbNOIlvVMgXYNs23rupYpB9LKvmsx7xTjpXCCPh98N9t2DZ2DMCY7mE3ya5v2Jlpv_q8Ef2-WcWcYa4ggohh8eDRI8fcW8mjWPk-TtAHiNhtNNaGY_iE_PkvSMtEShFRTV_SAuhRzTtA_NUSwmdIyKzMpzZSWwWVjXUTv_v3Kk-RvPAV4fwB6G41dJp_N3c_iIKaHNVO4EJ8OBJSR7zwkk52H4Eo8Cdxouuif6-ABKQqwbg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2000016784</pqid></control><display><type>article</type><title>Personal Omics Profiling Reveals Dynamic Molecular and Medical Phenotypes</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chen, Rui ; Mias, George I. ; Li-Pook-Than, Jennifer ; Jiang, Lihua ; Lam, Hugo Y.K. ; Chen, Rong ; Miriami, Elana ; Karczewski, Konrad J. ; Hariharan, Manoj ; Dewey, Frederick E. ; Cheng, Yong ; Clark, Michael J. ; Im, Hogune ; Habegger, Lukas ; Balasubramanian, Suganthi ; O'Huallachain, Maeve ; Dudley, Joel T. ; Hillenmeyer, Sara ; Haraksingh, Rajini ; Sharon, Donald ; Euskirchen, Ghia ; Lacroute, Phil ; Bettinger, Keith ; Boyle, Alan P. ; Kasowski, Maya ; Grubert, Fabian ; Seki, Scott ; Garcia, Marco ; Whirl-Carrillo, Michelle ; Gallardo, Mercedes ; Blasco, Maria A. ; Greenberg, Peter L. ; Snyder, Phyllis ; Klein, Teri E. ; Altman, Russ B. ; Butte, Atul J. ; Ashley, Euan A. ; Gerstein, Mark ; Nadeau, Kari C. ; Tang, Hua ; Snyder, Michael</creator><creatorcontrib>Chen, Rui ; Mias, George I. ; Li-Pook-Than, Jennifer ; Jiang, Lihua ; Lam, Hugo Y.K. ; Chen, Rong ; Miriami, Elana ; Karczewski, Konrad J. ; Hariharan, Manoj ; Dewey, Frederick E. ; Cheng, Yong ; Clark, Michael J. ; Im, Hogune ; Habegger, Lukas ; Balasubramanian, Suganthi ; O'Huallachain, Maeve ; Dudley, Joel T. ; Hillenmeyer, Sara ; Haraksingh, Rajini ; Sharon, Donald ; Euskirchen, Ghia ; Lacroute, Phil ; Bettinger, Keith ; Boyle, Alan P. ; Kasowski, Maya ; Grubert, Fabian ; Seki, Scott ; Garcia, Marco ; Whirl-Carrillo, Michelle ; Gallardo, Mercedes ; Blasco, Maria A. ; Greenberg, Peter L. ; Snyder, Phyllis ; Klein, Teri E. ; Altman, Russ B. ; Butte, Atul J. ; Ashley, Euan A. ; Gerstein, Mark ; Nadeau, Kari C. ; Tang, Hua ; Snyder, Michael</creatorcontrib><description>Personalized medicine is expected to benefit from combining genomic information with regular monitoring of physiological states by multiple high-throughput methods. Here, we present an integrative personal omics profile (iPOP), an analysis that combines genomic, transcriptomic, proteomic, metabolomic, and autoantibody profiles from a single individual over a 14 month period. Our iPOP analysis revealed various medical risks, including type 2 diabetes. It also uncovered extensive, dynamic changes in diverse molecular components and biological pathways across healthy and diseased conditions. Extremely high-coverage genomic and transcriptomic data, which provide the basis of our iPOP, revealed extensive heteroallelic changes during healthy and diseased states and an unexpected RNA editing mechanism. This study demonstrates that longitudinal iPOP can be used to interpret healthy and diseased states by connecting genomic information with additional dynamic omics activity. [Display omitted] ► Physiological states analyzed by integrative personal omics profiling ► Extensive molecular changes revealed during different health states ► Individual disease risk predicted from integrated omics data ► Extensive heteroallele and RNA editing during healthy and disease states A personalized medicine pilot study samples a patient's transcriptome, proteome, and metabolome multiple times over the course of 14 months and integrates this information with whole-genome sequence data to predict risk and provide a comprehensive view of healthy and disease states, including two viral infections and the onset of type 2 diabetes.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2012.02.009</identifier><identifier>PMID: 22424236</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>autoantibodies ; Diabetes Mellitus, Type 2 - genetics ; Female ; Gene Expression Profiling ; Genome, Human ; Genomics ; Humans ; Male ; medicine ; Metabolomics ; Middle Aged ; monitoring ; Mutation ; noninsulin-dependent diabetes mellitus ; phenotype ; Precision Medicine ; Proteomics ; Respiratory Syncytial Viruses - isolation &amp; purification ; Rhinovirus - isolation &amp; purification ; risk ; RNA editing ; transcriptomics</subject><ispartof>Cell, 2012-03, Vol.148 (6), p.1293-1307</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>2012 Elsevier Inc. All rights reserved 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-9fb7cd015592b5e8a43f8626eca446b3f38e9c43abbcdb38ce7a7fdb05d835c43</citedby><cites>FETCH-LOGICAL-c577t-9fb7cd015592b5e8a43f8626eca446b3f38e9c43abbcdb38ce7a7fdb05d835c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cell.2012.02.009$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22424236$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Rui</creatorcontrib><creatorcontrib>Mias, George I.</creatorcontrib><creatorcontrib>Li-Pook-Than, Jennifer</creatorcontrib><creatorcontrib>Jiang, Lihua</creatorcontrib><creatorcontrib>Lam, Hugo Y.K.</creatorcontrib><creatorcontrib>Chen, Rong</creatorcontrib><creatorcontrib>Miriami, Elana</creatorcontrib><creatorcontrib>Karczewski, Konrad J.</creatorcontrib><creatorcontrib>Hariharan, Manoj</creatorcontrib><creatorcontrib>Dewey, Frederick E.</creatorcontrib><creatorcontrib>Cheng, Yong</creatorcontrib><creatorcontrib>Clark, Michael J.</creatorcontrib><creatorcontrib>Im, Hogune</creatorcontrib><creatorcontrib>Habegger, Lukas</creatorcontrib><creatorcontrib>Balasubramanian, Suganthi</creatorcontrib><creatorcontrib>O'Huallachain, Maeve</creatorcontrib><creatorcontrib>Dudley, Joel T.</creatorcontrib><creatorcontrib>Hillenmeyer, Sara</creatorcontrib><creatorcontrib>Haraksingh, Rajini</creatorcontrib><creatorcontrib>Sharon, Donald</creatorcontrib><creatorcontrib>Euskirchen, Ghia</creatorcontrib><creatorcontrib>Lacroute, Phil</creatorcontrib><creatorcontrib>Bettinger, Keith</creatorcontrib><creatorcontrib>Boyle, Alan P.</creatorcontrib><creatorcontrib>Kasowski, Maya</creatorcontrib><creatorcontrib>Grubert, Fabian</creatorcontrib><creatorcontrib>Seki, Scott</creatorcontrib><creatorcontrib>Garcia, Marco</creatorcontrib><creatorcontrib>Whirl-Carrillo, Michelle</creatorcontrib><creatorcontrib>Gallardo, Mercedes</creatorcontrib><creatorcontrib>Blasco, Maria A.</creatorcontrib><creatorcontrib>Greenberg, Peter L.</creatorcontrib><creatorcontrib>Snyder, Phyllis</creatorcontrib><creatorcontrib>Klein, Teri E.</creatorcontrib><creatorcontrib>Altman, Russ B.</creatorcontrib><creatorcontrib>Butte, Atul J.</creatorcontrib><creatorcontrib>Ashley, Euan A.</creatorcontrib><creatorcontrib>Gerstein, Mark</creatorcontrib><creatorcontrib>Nadeau, Kari C.</creatorcontrib><creatorcontrib>Tang, Hua</creatorcontrib><creatorcontrib>Snyder, Michael</creatorcontrib><title>Personal Omics Profiling Reveals Dynamic Molecular and Medical Phenotypes</title><title>Cell</title><addtitle>Cell</addtitle><description>Personalized medicine is expected to benefit from combining genomic information with regular monitoring of physiological states by multiple high-throughput methods. Here, we present an integrative personal omics profile (iPOP), an analysis that combines genomic, transcriptomic, proteomic, metabolomic, and autoantibody profiles from a single individual over a 14 month period. Our iPOP analysis revealed various medical risks, including type 2 diabetes. It also uncovered extensive, dynamic changes in diverse molecular components and biological pathways across healthy and diseased conditions. Extremely high-coverage genomic and transcriptomic data, which provide the basis of our iPOP, revealed extensive heteroallelic changes during healthy and diseased states and an unexpected RNA editing mechanism. This study demonstrates that longitudinal iPOP can be used to interpret healthy and diseased states by connecting genomic information with additional dynamic omics activity. [Display omitted] ► Physiological states analyzed by integrative personal omics profiling ► Extensive molecular changes revealed during different health states ► Individual disease risk predicted from integrated omics data ► Extensive heteroallele and RNA editing during healthy and disease states A personalized medicine pilot study samples a patient's transcriptome, proteome, and metabolome multiple times over the course of 14 months and integrates this information with whole-genome sequence data to predict risk and provide a comprehensive view of healthy and disease states, including two viral infections and the onset of type 2 diabetes.</description><subject>autoantibodies</subject><subject>Diabetes Mellitus, Type 2 - genetics</subject><subject>Female</subject><subject>Gene Expression Profiling</subject><subject>Genome, Human</subject><subject>Genomics</subject><subject>Humans</subject><subject>Male</subject><subject>medicine</subject><subject>Metabolomics</subject><subject>Middle Aged</subject><subject>monitoring</subject><subject>Mutation</subject><subject>noninsulin-dependent diabetes mellitus</subject><subject>phenotype</subject><subject>Precision Medicine</subject><subject>Proteomics</subject><subject>Respiratory Syncytial Viruses - isolation &amp; purification</subject><subject>Rhinovirus - isolation &amp; purification</subject><subject>risk</subject><subject>RNA editing</subject><subject>transcriptomics</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kV1rFDEUhoModtv6B7zQudOb2eZj8gUiSLW10NJF7XXIZM5ss8wmazK7sP--GbcWvSkJBHKe983JeRF6S_CcYCLOVnMHwzCnmNA5LhvrF2hGsJZ1QyR9iWblhtZKyOYIHee8whgrzvlrdERpUxYTM3S1gJRjsEN1u_YuV4sUez_4sKx-wA7skKuv-2BLqbqJA7jtYFNlQ1fdQOddUS3uIcRxv4F8il71hYc3j-cJurv49uv8e319e3l1_uW6dlzKsdZ9K12HCeeathyUbVivBBXgbNOIlvVMgXYNs23rupYpB9LKvmsx7xTjpXCCPh98N9t2DZ2DMCY7mE3ya5v2Jlpv_q8Ef2-WcWcYa4ggohh8eDRI8fcW8mjWPk-TtAHiNhtNNaGY_iE_PkvSMtEShFRTV_SAuhRzTtA_NUSwmdIyKzMpzZSWwWVjXUTv_v3Kk-RvPAV4fwB6G41dJp_N3c_iIKaHNVO4EJ8OBJSR7zwkk52H4Eo8Cdxouuif6-ABKQqwbg</recordid><startdate>20120316</startdate><enddate>20120316</enddate><creator>Chen, Rui</creator><creator>Mias, George I.</creator><creator>Li-Pook-Than, Jennifer</creator><creator>Jiang, Lihua</creator><creator>Lam, Hugo Y.K.</creator><creator>Chen, Rong</creator><creator>Miriami, Elana</creator><creator>Karczewski, Konrad J.</creator><creator>Hariharan, Manoj</creator><creator>Dewey, Frederick E.</creator><creator>Cheng, Yong</creator><creator>Clark, Michael J.</creator><creator>Im, Hogune</creator><creator>Habegger, Lukas</creator><creator>Balasubramanian, Suganthi</creator><creator>O'Huallachain, Maeve</creator><creator>Dudley, Joel T.</creator><creator>Hillenmeyer, Sara</creator><creator>Haraksingh, Rajini</creator><creator>Sharon, Donald</creator><creator>Euskirchen, Ghia</creator><creator>Lacroute, Phil</creator><creator>Bettinger, Keith</creator><creator>Boyle, Alan P.</creator><creator>Kasowski, Maya</creator><creator>Grubert, Fabian</creator><creator>Seki, Scott</creator><creator>Garcia, Marco</creator><creator>Whirl-Carrillo, Michelle</creator><creator>Gallardo, Mercedes</creator><creator>Blasco, Maria A.</creator><creator>Greenberg, Peter L.</creator><creator>Snyder, Phyllis</creator><creator>Klein, Teri E.</creator><creator>Altman, Russ B.</creator><creator>Butte, Atul J.</creator><creator>Ashley, Euan A.</creator><creator>Gerstein, Mark</creator><creator>Nadeau, Kari C.</creator><creator>Tang, Hua</creator><creator>Snyder, Michael</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120316</creationdate><title>Personal Omics Profiling Reveals Dynamic Molecular and Medical Phenotypes</title><author>Chen, Rui ; Mias, George I. ; Li-Pook-Than, Jennifer ; Jiang, Lihua ; Lam, Hugo Y.K. ; Chen, Rong ; Miriami, Elana ; Karczewski, Konrad J. ; Hariharan, Manoj ; Dewey, Frederick E. ; Cheng, Yong ; Clark, Michael J. ; Im, Hogune ; Habegger, Lukas ; Balasubramanian, Suganthi ; O'Huallachain, Maeve ; Dudley, Joel T. ; Hillenmeyer, Sara ; Haraksingh, Rajini ; Sharon, Donald ; Euskirchen, Ghia ; Lacroute, Phil ; Bettinger, Keith ; Boyle, Alan P. ; Kasowski, Maya ; Grubert, Fabian ; Seki, Scott ; Garcia, Marco ; Whirl-Carrillo, Michelle ; Gallardo, Mercedes ; Blasco, Maria A. ; Greenberg, Peter L. ; Snyder, Phyllis ; Klein, Teri E. ; Altman, Russ B. ; Butte, Atul J. ; Ashley, Euan A. ; Gerstein, Mark ; Nadeau, Kari C. ; Tang, Hua ; Snyder, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-9fb7cd015592b5e8a43f8626eca446b3f38e9c43abbcdb38ce7a7fdb05d835c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>autoantibodies</topic><topic>Diabetes Mellitus, Type 2 - genetics</topic><topic>Female</topic><topic>Gene Expression Profiling</topic><topic>Genome, Human</topic><topic>Genomics</topic><topic>Humans</topic><topic>Male</topic><topic>medicine</topic><topic>Metabolomics</topic><topic>Middle Aged</topic><topic>monitoring</topic><topic>Mutation</topic><topic>noninsulin-dependent diabetes mellitus</topic><topic>phenotype</topic><topic>Precision Medicine</topic><topic>Proteomics</topic><topic>Respiratory Syncytial Viruses - isolation &amp; purification</topic><topic>Rhinovirus - isolation &amp; purification</topic><topic>risk</topic><topic>RNA editing</topic><topic>transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Rui</creatorcontrib><creatorcontrib>Mias, George I.</creatorcontrib><creatorcontrib>Li-Pook-Than, Jennifer</creatorcontrib><creatorcontrib>Jiang, Lihua</creatorcontrib><creatorcontrib>Lam, Hugo Y.K.</creatorcontrib><creatorcontrib>Chen, Rong</creatorcontrib><creatorcontrib>Miriami, Elana</creatorcontrib><creatorcontrib>Karczewski, Konrad J.</creatorcontrib><creatorcontrib>Hariharan, Manoj</creatorcontrib><creatorcontrib>Dewey, Frederick E.</creatorcontrib><creatorcontrib>Cheng, Yong</creatorcontrib><creatorcontrib>Clark, Michael J.</creatorcontrib><creatorcontrib>Im, Hogune</creatorcontrib><creatorcontrib>Habegger, Lukas</creatorcontrib><creatorcontrib>Balasubramanian, Suganthi</creatorcontrib><creatorcontrib>O'Huallachain, Maeve</creatorcontrib><creatorcontrib>Dudley, Joel T.</creatorcontrib><creatorcontrib>Hillenmeyer, Sara</creatorcontrib><creatorcontrib>Haraksingh, Rajini</creatorcontrib><creatorcontrib>Sharon, Donald</creatorcontrib><creatorcontrib>Euskirchen, Ghia</creatorcontrib><creatorcontrib>Lacroute, Phil</creatorcontrib><creatorcontrib>Bettinger, Keith</creatorcontrib><creatorcontrib>Boyle, Alan P.</creatorcontrib><creatorcontrib>Kasowski, Maya</creatorcontrib><creatorcontrib>Grubert, Fabian</creatorcontrib><creatorcontrib>Seki, Scott</creatorcontrib><creatorcontrib>Garcia, Marco</creatorcontrib><creatorcontrib>Whirl-Carrillo, Michelle</creatorcontrib><creatorcontrib>Gallardo, Mercedes</creatorcontrib><creatorcontrib>Blasco, Maria A.</creatorcontrib><creatorcontrib>Greenberg, Peter L.</creatorcontrib><creatorcontrib>Snyder, Phyllis</creatorcontrib><creatorcontrib>Klein, Teri E.</creatorcontrib><creatorcontrib>Altman, Russ B.</creatorcontrib><creatorcontrib>Butte, Atul J.</creatorcontrib><creatorcontrib>Ashley, Euan A.</creatorcontrib><creatorcontrib>Gerstein, Mark</creatorcontrib><creatorcontrib>Nadeau, Kari C.</creatorcontrib><creatorcontrib>Tang, Hua</creatorcontrib><creatorcontrib>Snyder, Michael</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Rui</au><au>Mias, George I.</au><au>Li-Pook-Than, Jennifer</au><au>Jiang, Lihua</au><au>Lam, Hugo Y.K.</au><au>Chen, Rong</au><au>Miriami, Elana</au><au>Karczewski, Konrad J.</au><au>Hariharan, Manoj</au><au>Dewey, Frederick E.</au><au>Cheng, Yong</au><au>Clark, Michael J.</au><au>Im, Hogune</au><au>Habegger, Lukas</au><au>Balasubramanian, Suganthi</au><au>O'Huallachain, Maeve</au><au>Dudley, Joel T.</au><au>Hillenmeyer, Sara</au><au>Haraksingh, Rajini</au><au>Sharon, Donald</au><au>Euskirchen, Ghia</au><au>Lacroute, Phil</au><au>Bettinger, Keith</au><au>Boyle, Alan P.</au><au>Kasowski, Maya</au><au>Grubert, Fabian</au><au>Seki, Scott</au><au>Garcia, Marco</au><au>Whirl-Carrillo, Michelle</au><au>Gallardo, Mercedes</au><au>Blasco, Maria A.</au><au>Greenberg, Peter L.</au><au>Snyder, Phyllis</au><au>Klein, Teri E.</au><au>Altman, Russ B.</au><au>Butte, Atul J.</au><au>Ashley, Euan A.</au><au>Gerstein, Mark</au><au>Nadeau, Kari C.</au><au>Tang, Hua</au><au>Snyder, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Personal Omics Profiling Reveals Dynamic Molecular and Medical Phenotypes</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2012-03-16</date><risdate>2012</risdate><volume>148</volume><issue>6</issue><spage>1293</spage><epage>1307</epage><pages>1293-1307</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Personalized medicine is expected to benefit from combining genomic information with regular monitoring of physiological states by multiple high-throughput methods. Here, we present an integrative personal omics profile (iPOP), an analysis that combines genomic, transcriptomic, proteomic, metabolomic, and autoantibody profiles from a single individual over a 14 month period. Our iPOP analysis revealed various medical risks, including type 2 diabetes. It also uncovered extensive, dynamic changes in diverse molecular components and biological pathways across healthy and diseased conditions. Extremely high-coverage genomic and transcriptomic data, which provide the basis of our iPOP, revealed extensive heteroallelic changes during healthy and diseased states and an unexpected RNA editing mechanism. This study demonstrates that longitudinal iPOP can be used to interpret healthy and diseased states by connecting genomic information with additional dynamic omics activity. [Display omitted] ► Physiological states analyzed by integrative personal omics profiling ► Extensive molecular changes revealed during different health states ► Individual disease risk predicted from integrated omics data ► Extensive heteroallele and RNA editing during healthy and disease states A personalized medicine pilot study samples a patient's transcriptome, proteome, and metabolome multiple times over the course of 14 months and integrates this information with whole-genome sequence data to predict risk and provide a comprehensive view of healthy and disease states, including two viral infections and the onset of type 2 diabetes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22424236</pmid><doi>10.1016/j.cell.2012.02.009</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2012-03, Vol.148 (6), p.1293-1307
issn 0092-8674
1097-4172
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3341616
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects autoantibodies
Diabetes Mellitus, Type 2 - genetics
Female
Gene Expression Profiling
Genome, Human
Genomics
Humans
Male
medicine
Metabolomics
Middle Aged
monitoring
Mutation
noninsulin-dependent diabetes mellitus
phenotype
Precision Medicine
Proteomics
Respiratory Syncytial Viruses - isolation & purification
Rhinovirus - isolation & purification
risk
RNA editing
transcriptomics
title Personal Omics Profiling Reveals Dynamic Molecular and Medical Phenotypes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A53%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Personal%20Omics%20Profiling%20Reveals%20Dynamic%20Molecular%20and%20Medical%20Phenotypes&rft.jtitle=Cell&rft.au=Chen,%20Rui&rft.date=2012-03-16&rft.volume=148&rft.issue=6&rft.spage=1293&rft.epage=1307&rft.pages=1293-1307&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2012.02.009&rft_dat=%3Cproquest_pubme%3E929120216%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2000016784&rft_id=info:pmid/22424236&rft_els_id=S0092867412001663&rfr_iscdi=true