Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma
Pancreatic cancer is one of the most deadly cancers affecting the Western world. Because the disease is highly metastatic and difficult to diagnosis until late stages, the 5-y survival rate is around 5%. The identification of molecular cancer drivers is critical for furthering our understanding of t...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2012-04, Vol.109 (16), p.5934-5941 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5941 |
---|---|
container_issue | 16 |
container_start_page | 5934 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 109 |
creator | Mann, Karen M. Ward, Jerrold M. Yew, Christopher Chin Kuan Kovochich, Anne Dawson, David W. Black, Michael A. Brett, Benjamin T. Sheetz, Todd E. Dupuy, Adam J. Chang, David K. Biankin, Andrew V. Waddell, Nicola Kassahn, Karin S. Grimmond, Sean M. Rust, Alistair G. Adams, David J. Jenkins, Nancy A. Copeland, Neal G. |
description | Pancreatic cancer is one of the most deadly cancers affecting the Western world. Because the disease is highly metastatic and difficult to diagnosis until late stages, the 5-y survival rate is around 5%. The identification of molecular cancer drivers is critical for furthering our understanding of the disease and development of improved diagnostic tools and therapeutics. We have conducted a mutagenic screen using Sleeping Beauty (SB) in mice to identify new candidate cancer genes in pancreatic cancer. By combining SB with an oncogenic Kras allele, we observed highly metastatic pancreatic adenocarcinomas. Using two independent statistical methods to identify loci commonly mutated by SB in these tumors, we identified 681 loci that comprise 543 candidate cancer genes (CCGs); 75 of these CCGs, including Mll3 and Ptk2, have known mutations in human pancreatic cancer. We identified point mutations in human pancreatic patient samples for another 11 CCGs, including Acvr2a and Map2k4. Importantly, 10% of the CCGs are involved in chromatin remodeling, including Arid4b, Kdm6a, and Nsd3, and all SB tumors have at least one mutated gene involved in this process; 20 CCGs, including Ctnnd1, Fbxo11, and Vgll4, are also significantly associated with poor patient survival. SB mutagenesis provides a rich resource of mutations in potential cancer drivers for cross-comparative analyses with ongoing sequencing efforts in human pancreatic adenocarcinoma. |
doi_str_mv | 10.1073/pnas.1202490109 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3341075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41588451</jstor_id><sourcerecordid>41588451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-a5262ab2d4865f2f8f0a76959fa3541152e52a1efc9ea4cc266a3d2c5b5e7cbc3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EokvhzAmI1AuXtOPPTS5IUPElVeIAnK1ZZ7LNKrGDnRTtf19Hu2yBi-3R-83TjB9jLzlccljLq9FjuuQChKqBQ_2IrfLJS5PLx2wFINZlpYQ6Y89S2gFArSt4ys6EUIIrBSvmvvdEY-e3xQfCedoXwzzhljylLhWR7gj7VLgQRoo4LdiiT13wqUDfFCNOt79xn4rO57d3kbLoCmzIB4fRdT4M-Jw9abMNvTje5-znp48_rr-UN98-f71-f1M6DTCVqIURuBGNqoxuRVu1gGtT67pFqRXnWpAWyKl1NaFyThiDshFObzSt3cbJc_bu4DvOm4EaR36K2NsxdgPGvQ3Y2X8V393abbizUqr8mzobvD0axPBrpjTZoUuO-h49hTlZbozUkksOGb34D92FOfq8nuUAlVF58MXw6kC5GFKK1J6G4WCXAO0SoH0IMHe8_nuHE_8nsQy8OQJL54NdnaezupYqE68OxC5NIZ4QxXVVKc3lPXSprYg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1008646955</pqid></control><display><type>article</type><title>Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Mann, Karen M. ; Ward, Jerrold M. ; Yew, Christopher Chin Kuan ; Kovochich, Anne ; Dawson, David W. ; Black, Michael A. ; Brett, Benjamin T. ; Sheetz, Todd E. ; Dupuy, Adam J. ; Chang, David K. ; Biankin, Andrew V. ; Waddell, Nicola ; Kassahn, Karin S. ; Grimmond, Sean M. ; Rust, Alistair G. ; Adams, David J. ; Jenkins, Nancy A. ; Copeland, Neal G.</creator><creatorcontrib>Mann, Karen M. ; Ward, Jerrold M. ; Yew, Christopher Chin Kuan ; Kovochich, Anne ; Dawson, David W. ; Black, Michael A. ; Brett, Benjamin T. ; Sheetz, Todd E. ; Dupuy, Adam J. ; Chang, David K. ; Biankin, Andrew V. ; Waddell, Nicola ; Kassahn, Karin S. ; Grimmond, Sean M. ; Rust, Alistair G. ; Adams, David J. ; Jenkins, Nancy A. ; Copeland, Neal G. ; Australian Pancreatic Cancer Genome Initiative ; Australian Pancreatic Cancer Genome Initiative</creatorcontrib><description>Pancreatic cancer is one of the most deadly cancers affecting the Western world. Because the disease is highly metastatic and difficult to diagnosis until late stages, the 5-y survival rate is around 5%. The identification of molecular cancer drivers is critical for furthering our understanding of the disease and development of improved diagnostic tools and therapeutics. We have conducted a mutagenic screen using Sleeping Beauty (SB) in mice to identify new candidate cancer genes in pancreatic cancer. By combining SB with an oncogenic Kras allele, we observed highly metastatic pancreatic adenocarcinomas. Using two independent statistical methods to identify loci commonly mutated by SB in these tumors, we identified 681 loci that comprise 543 candidate cancer genes (CCGs); 75 of these CCGs, including Mll3 and Ptk2, have known mutations in human pancreatic cancer. We identified point mutations in human pancreatic patient samples for another 11 CCGs, including Acvr2a and Map2k4. Importantly, 10% of the CCGs are involved in chromatin remodeling, including Arid4b, Kdm6a, and Nsd3, and all SB tumors have at least one mutated gene involved in this process; 20 CCGs, including Ctnnd1, Fbxo11, and Vgll4, are also significantly associated with poor patient survival. SB mutagenesis provides a rich resource of mutations in potential cancer drivers for cross-comparative analyses with ongoing sequencing efforts in human pancreatic adenocarcinoma.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1202490109</identifier><identifier>PMID: 22421440</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenocarcinoma ; Adenocarcinoma - genetics ; Adenocarcinoma - metabolism ; Adenocarcinoma - pathology ; alleles ; Animals ; Biological Sciences ; Cancer ; Catenins ; Catenins - genetics ; Catenins - metabolism ; chromatin ; Disease Models, Animal ; DNA Transposable Elements ; DNA Transposable Elements - genetics ; Gene loci ; Genes ; Genes, ras ; Genes, ras - genetics ; Genetic mutation ; Genetic Predisposition to Disease ; Genetic Predisposition to Disease - genetics ; Genetic screening ; genetics ; Genome-Wide Association Study ; Genomes ; GTP-Binding Protein alpha Subunits ; GTP-Binding Protein alpha Subunits - genetics ; GTP-Binding Protein alpha Subunits - metabolism ; GTP-Binding Protein alpha Subunits, Gq-G11 ; Humans ; Immunohistochemistry ; loci ; metabolism ; metastasis ; Mice ; Mice, 129 Strain ; Mice, Transgenic ; Mutagenesis ; Mutagenesis, Insertional ; mutagenicity ; Mutation ; Oncogenes ; Pancreas ; Pancreas - metabolism ; Pancreas - pathology ; Pancreatic cancer ; Pancreatic neoplasms ; Pancreatic Neoplasms - genetics ; Pancreatic Neoplasms - metabolism ; Pancreatic Neoplasms - pathology ; pathology ; patients ; point mutation ; Rodents ; Signal Transduction ; Signal Transduction - genetics ; statistical analysis ; Survival Analysis ; survival rate ; therapeutics ; Transposons ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-04, Vol.109 (16), p.5934-5941</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Apr 17, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-a5262ab2d4865f2f8f0a76959fa3541152e52a1efc9ea4cc266a3d2c5b5e7cbc3</citedby><cites>FETCH-LOGICAL-c500t-a5262ab2d4865f2f8f0a76959fa3541152e52a1efc9ea4cc266a3d2c5b5e7cbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/16.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41588451$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41588451$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22421440$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mann, Karen M.</creatorcontrib><creatorcontrib>Ward, Jerrold M.</creatorcontrib><creatorcontrib>Yew, Christopher Chin Kuan</creatorcontrib><creatorcontrib>Kovochich, Anne</creatorcontrib><creatorcontrib>Dawson, David W.</creatorcontrib><creatorcontrib>Black, Michael A.</creatorcontrib><creatorcontrib>Brett, Benjamin T.</creatorcontrib><creatorcontrib>Sheetz, Todd E.</creatorcontrib><creatorcontrib>Dupuy, Adam J.</creatorcontrib><creatorcontrib>Chang, David K.</creatorcontrib><creatorcontrib>Biankin, Andrew V.</creatorcontrib><creatorcontrib>Waddell, Nicola</creatorcontrib><creatorcontrib>Kassahn, Karin S.</creatorcontrib><creatorcontrib>Grimmond, Sean M.</creatorcontrib><creatorcontrib>Rust, Alistair G.</creatorcontrib><creatorcontrib>Adams, David J.</creatorcontrib><creatorcontrib>Jenkins, Nancy A.</creatorcontrib><creatorcontrib>Copeland, Neal G.</creatorcontrib><creatorcontrib>Australian Pancreatic Cancer Genome Initiative</creatorcontrib><creatorcontrib>Australian Pancreatic Cancer Genome Initiative</creatorcontrib><title>Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Pancreatic cancer is one of the most deadly cancers affecting the Western world. Because the disease is highly metastatic and difficult to diagnosis until late stages, the 5-y survival rate is around 5%. The identification of molecular cancer drivers is critical for furthering our understanding of the disease and development of improved diagnostic tools and therapeutics. We have conducted a mutagenic screen using Sleeping Beauty (SB) in mice to identify new candidate cancer genes in pancreatic cancer. By combining SB with an oncogenic Kras allele, we observed highly metastatic pancreatic adenocarcinomas. Using two independent statistical methods to identify loci commonly mutated by SB in these tumors, we identified 681 loci that comprise 543 candidate cancer genes (CCGs); 75 of these CCGs, including Mll3 and Ptk2, have known mutations in human pancreatic cancer. We identified point mutations in human pancreatic patient samples for another 11 CCGs, including Acvr2a and Map2k4. Importantly, 10% of the CCGs are involved in chromatin remodeling, including Arid4b, Kdm6a, and Nsd3, and all SB tumors have at least one mutated gene involved in this process; 20 CCGs, including Ctnnd1, Fbxo11, and Vgll4, are also significantly associated with poor patient survival. SB mutagenesis provides a rich resource of mutations in potential cancer drivers for cross-comparative analyses with ongoing sequencing efforts in human pancreatic adenocarcinoma.</description><subject>Adenocarcinoma</subject><subject>Adenocarcinoma - genetics</subject><subject>Adenocarcinoma - metabolism</subject><subject>Adenocarcinoma - pathology</subject><subject>alleles</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cancer</subject><subject>Catenins</subject><subject>Catenins - genetics</subject><subject>Catenins - metabolism</subject><subject>chromatin</subject><subject>Disease Models, Animal</subject><subject>DNA Transposable Elements</subject><subject>DNA Transposable Elements - genetics</subject><subject>Gene loci</subject><subject>Genes</subject><subject>Genes, ras</subject><subject>Genes, ras - genetics</subject><subject>Genetic mutation</subject><subject>Genetic Predisposition to Disease</subject><subject>Genetic Predisposition to Disease - genetics</subject><subject>Genetic screening</subject><subject>genetics</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>GTP-Binding Protein alpha Subunits</subject><subject>GTP-Binding Protein alpha Subunits - genetics</subject><subject>GTP-Binding Protein alpha Subunits - metabolism</subject><subject>GTP-Binding Protein alpha Subunits, Gq-G11</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>loci</subject><subject>metabolism</subject><subject>metastasis</subject><subject>Mice</subject><subject>Mice, 129 Strain</subject><subject>Mice, Transgenic</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Insertional</subject><subject>mutagenicity</subject><subject>Mutation</subject><subject>Oncogenes</subject><subject>Pancreas</subject><subject>Pancreas - metabolism</subject><subject>Pancreas - pathology</subject><subject>Pancreatic cancer</subject><subject>Pancreatic neoplasms</subject><subject>Pancreatic Neoplasms - genetics</subject><subject>Pancreatic Neoplasms - metabolism</subject><subject>Pancreatic Neoplasms - pathology</subject><subject>pathology</subject><subject>patients</subject><subject>point mutation</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Signal Transduction - genetics</subject><subject>statistical analysis</subject><subject>Survival Analysis</subject><subject>survival rate</subject><subject>therapeutics</subject><subject>Transposons</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS0EokvhzAmI1AuXtOPPTS5IUPElVeIAnK1ZZ7LNKrGDnRTtf19Hu2yBi-3R-83TjB9jLzlccljLq9FjuuQChKqBQ_2IrfLJS5PLx2wFINZlpYQ6Y89S2gFArSt4ys6EUIIrBSvmvvdEY-e3xQfCedoXwzzhljylLhWR7gj7VLgQRoo4LdiiT13wqUDfFCNOt79xn4rO57d3kbLoCmzIB4fRdT4M-Jw9abMNvTje5-znp48_rr-UN98-f71-f1M6DTCVqIURuBGNqoxuRVu1gGtT67pFqRXnWpAWyKl1NaFyThiDshFObzSt3cbJc_bu4DvOm4EaR36K2NsxdgPGvQ3Y2X8V393abbizUqr8mzobvD0axPBrpjTZoUuO-h49hTlZbozUkksOGb34D92FOfq8nuUAlVF58MXw6kC5GFKK1J6G4WCXAO0SoH0IMHe8_nuHE_8nsQy8OQJL54NdnaezupYqE68OxC5NIZ4QxXVVKc3lPXSprYg</recordid><startdate>20120417</startdate><enddate>20120417</enddate><creator>Mann, Karen M.</creator><creator>Ward, Jerrold M.</creator><creator>Yew, Christopher Chin Kuan</creator><creator>Kovochich, Anne</creator><creator>Dawson, David W.</creator><creator>Black, Michael A.</creator><creator>Brett, Benjamin T.</creator><creator>Sheetz, Todd E.</creator><creator>Dupuy, Adam J.</creator><creator>Chang, David K.</creator><creator>Biankin, Andrew V.</creator><creator>Waddell, Nicola</creator><creator>Kassahn, Karin S.</creator><creator>Grimmond, Sean M.</creator><creator>Rust, Alistair G.</creator><creator>Adams, David J.</creator><creator>Jenkins, Nancy A.</creator><creator>Copeland, Neal G.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20120417</creationdate><title>Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma</title><author>Mann, Karen M. ; Ward, Jerrold M. ; Yew, Christopher Chin Kuan ; Kovochich, Anne ; Dawson, David W. ; Black, Michael A. ; Brett, Benjamin T. ; Sheetz, Todd E. ; Dupuy, Adam J. ; Chang, David K. ; Biankin, Andrew V. ; Waddell, Nicola ; Kassahn, Karin S. ; Grimmond, Sean M. ; Rust, Alistair G. ; Adams, David J. ; Jenkins, Nancy A. ; Copeland, Neal G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-a5262ab2d4865f2f8f0a76959fa3541152e52a1efc9ea4cc266a3d2c5b5e7cbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adenocarcinoma</topic><topic>Adenocarcinoma - genetics</topic><topic>Adenocarcinoma - metabolism</topic><topic>Adenocarcinoma - pathology</topic><topic>alleles</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cancer</topic><topic>Catenins</topic><topic>Catenins - genetics</topic><topic>Catenins - metabolism</topic><topic>chromatin</topic><topic>Disease Models, Animal</topic><topic>DNA Transposable Elements</topic><topic>DNA Transposable Elements - genetics</topic><topic>Gene loci</topic><topic>Genes</topic><topic>Genes, ras</topic><topic>Genes, ras - genetics</topic><topic>Genetic mutation</topic><topic>Genetic Predisposition to Disease</topic><topic>Genetic Predisposition to Disease - genetics</topic><topic>Genetic screening</topic><topic>genetics</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>GTP-Binding Protein alpha Subunits</topic><topic>GTP-Binding Protein alpha Subunits - genetics</topic><topic>GTP-Binding Protein alpha Subunits - metabolism</topic><topic>GTP-Binding Protein alpha Subunits, Gq-G11</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>loci</topic><topic>metabolism</topic><topic>metastasis</topic><topic>Mice</topic><topic>Mice, 129 Strain</topic><topic>Mice, Transgenic</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Insertional</topic><topic>mutagenicity</topic><topic>Mutation</topic><topic>Oncogenes</topic><topic>Pancreas</topic><topic>Pancreas - metabolism</topic><topic>Pancreas - pathology</topic><topic>Pancreatic cancer</topic><topic>Pancreatic neoplasms</topic><topic>Pancreatic Neoplasms - genetics</topic><topic>Pancreatic Neoplasms - metabolism</topic><topic>Pancreatic Neoplasms - pathology</topic><topic>pathology</topic><topic>patients</topic><topic>point mutation</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Signal Transduction - genetics</topic><topic>statistical analysis</topic><topic>Survival Analysis</topic><topic>survival rate</topic><topic>therapeutics</topic><topic>Transposons</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mann, Karen M.</creatorcontrib><creatorcontrib>Ward, Jerrold M.</creatorcontrib><creatorcontrib>Yew, Christopher Chin Kuan</creatorcontrib><creatorcontrib>Kovochich, Anne</creatorcontrib><creatorcontrib>Dawson, David W.</creatorcontrib><creatorcontrib>Black, Michael A.</creatorcontrib><creatorcontrib>Brett, Benjamin T.</creatorcontrib><creatorcontrib>Sheetz, Todd E.</creatorcontrib><creatorcontrib>Dupuy, Adam J.</creatorcontrib><creatorcontrib>Chang, David K.</creatorcontrib><creatorcontrib>Biankin, Andrew V.</creatorcontrib><creatorcontrib>Waddell, Nicola</creatorcontrib><creatorcontrib>Kassahn, Karin S.</creatorcontrib><creatorcontrib>Grimmond, Sean M.</creatorcontrib><creatorcontrib>Rust, Alistair G.</creatorcontrib><creatorcontrib>Adams, David J.</creatorcontrib><creatorcontrib>Jenkins, Nancy A.</creatorcontrib><creatorcontrib>Copeland, Neal G.</creatorcontrib><creatorcontrib>Australian Pancreatic Cancer Genome Initiative</creatorcontrib><creatorcontrib>Australian Pancreatic Cancer Genome Initiative</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mann, Karen M.</au><au>Ward, Jerrold M.</au><au>Yew, Christopher Chin Kuan</au><au>Kovochich, Anne</au><au>Dawson, David W.</au><au>Black, Michael A.</au><au>Brett, Benjamin T.</au><au>Sheetz, Todd E.</au><au>Dupuy, Adam J.</au><au>Chang, David K.</au><au>Biankin, Andrew V.</au><au>Waddell, Nicola</au><au>Kassahn, Karin S.</au><au>Grimmond, Sean M.</au><au>Rust, Alistair G.</au><au>Adams, David J.</au><au>Jenkins, Nancy A.</au><au>Copeland, Neal G.</au><aucorp>Australian Pancreatic Cancer Genome Initiative</aucorp><aucorp>Australian Pancreatic Cancer Genome Initiative</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-04-17</date><risdate>2012</risdate><volume>109</volume><issue>16</issue><spage>5934</spage><epage>5941</epage><pages>5934-5941</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Pancreatic cancer is one of the most deadly cancers affecting the Western world. Because the disease is highly metastatic and difficult to diagnosis until late stages, the 5-y survival rate is around 5%. The identification of molecular cancer drivers is critical for furthering our understanding of the disease and development of improved diagnostic tools and therapeutics. We have conducted a mutagenic screen using Sleeping Beauty (SB) in mice to identify new candidate cancer genes in pancreatic cancer. By combining SB with an oncogenic Kras allele, we observed highly metastatic pancreatic adenocarcinomas. Using two independent statistical methods to identify loci commonly mutated by SB in these tumors, we identified 681 loci that comprise 543 candidate cancer genes (CCGs); 75 of these CCGs, including Mll3 and Ptk2, have known mutations in human pancreatic cancer. We identified point mutations in human pancreatic patient samples for another 11 CCGs, including Acvr2a and Map2k4. Importantly, 10% of the CCGs are involved in chromatin remodeling, including Arid4b, Kdm6a, and Nsd3, and all SB tumors have at least one mutated gene involved in this process; 20 CCGs, including Ctnnd1, Fbxo11, and Vgll4, are also significantly associated with poor patient survival. SB mutagenesis provides a rich resource of mutations in potential cancer drivers for cross-comparative analyses with ongoing sequencing efforts in human pancreatic adenocarcinoma.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22421440</pmid><doi>10.1073/pnas.1202490109</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2012-04, Vol.109 (16), p.5934-5941 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3341075 |
source | Jstor Complete Legacy; MEDLINE; Full-Text Journals in Chemistry (Open access); PubMed Central; Alma/SFX Local Collection |
subjects | Adenocarcinoma Adenocarcinoma - genetics Adenocarcinoma - metabolism Adenocarcinoma - pathology alleles Animals Biological Sciences Cancer Catenins Catenins - genetics Catenins - metabolism chromatin Disease Models, Animal DNA Transposable Elements DNA Transposable Elements - genetics Gene loci Genes Genes, ras Genes, ras - genetics Genetic mutation Genetic Predisposition to Disease Genetic Predisposition to Disease - genetics Genetic screening genetics Genome-Wide Association Study Genomes GTP-Binding Protein alpha Subunits GTP-Binding Protein alpha Subunits - genetics GTP-Binding Protein alpha Subunits - metabolism GTP-Binding Protein alpha Subunits, Gq-G11 Humans Immunohistochemistry loci metabolism metastasis Mice Mice, 129 Strain Mice, Transgenic Mutagenesis Mutagenesis, Insertional mutagenicity Mutation Oncogenes Pancreas Pancreas - metabolism Pancreas - pathology Pancreatic cancer Pancreatic neoplasms Pancreatic Neoplasms - genetics Pancreatic Neoplasms - metabolism Pancreatic Neoplasms - pathology pathology patients point mutation Rodents Signal Transduction Signal Transduction - genetics statistical analysis Survival Analysis survival rate therapeutics Transposons Tumors |
title | Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A01%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sleeping%20Beauty%20mutagenesis%20reveals%20cooperating%20mutations%20and%20pathways%20in%20pancreatic%20adenocarcinoma&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Mann,%20Karen%20M.&rft.aucorp=Australian%20Pancreatic%20Cancer%20Genome%20Initiative&rft.date=2012-04-17&rft.volume=109&rft.issue=16&rft.spage=5934&rft.epage=5941&rft.pages=5934-5941&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1202490109&rft_dat=%3Cjstor_pubme%3E41588451%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1008646955&rft_id=info:pmid/22421440&rft_jstor_id=41588451&rfr_iscdi=true |