Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma

Pancreatic cancer is one of the most deadly cancers affecting the Western world. Because the disease is highly metastatic and difficult to diagnosis until late stages, the 5-y survival rate is around 5%. The identification of molecular cancer drivers is critical for furthering our understanding of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2012-04, Vol.109 (16), p.5934-5941
Hauptverfasser: Mann, Karen M., Ward, Jerrold M., Yew, Christopher Chin Kuan, Kovochich, Anne, Dawson, David W., Black, Michael A., Brett, Benjamin T., Sheetz, Todd E., Dupuy, Adam J., Chang, David K., Biankin, Andrew V., Waddell, Nicola, Kassahn, Karin S., Grimmond, Sean M., Rust, Alistair G., Adams, David J., Jenkins, Nancy A., Copeland, Neal G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5941
container_issue 16
container_start_page 5934
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 109
creator Mann, Karen M.
Ward, Jerrold M.
Yew, Christopher Chin Kuan
Kovochich, Anne
Dawson, David W.
Black, Michael A.
Brett, Benjamin T.
Sheetz, Todd E.
Dupuy, Adam J.
Chang, David K.
Biankin, Andrew V.
Waddell, Nicola
Kassahn, Karin S.
Grimmond, Sean M.
Rust, Alistair G.
Adams, David J.
Jenkins, Nancy A.
Copeland, Neal G.
description Pancreatic cancer is one of the most deadly cancers affecting the Western world. Because the disease is highly metastatic and difficult to diagnosis until late stages, the 5-y survival rate is around 5%. The identification of molecular cancer drivers is critical for furthering our understanding of the disease and development of improved diagnostic tools and therapeutics. We have conducted a mutagenic screen using Sleeping Beauty (SB) in mice to identify new candidate cancer genes in pancreatic cancer. By combining SB with an oncogenic Kras allele, we observed highly metastatic pancreatic adenocarcinomas. Using two independent statistical methods to identify loci commonly mutated by SB in these tumors, we identified 681 loci that comprise 543 candidate cancer genes (CCGs); 75 of these CCGs, including Mll3 and Ptk2, have known mutations in human pancreatic cancer. We identified point mutations in human pancreatic patient samples for another 11 CCGs, including Acvr2a and Map2k4. Importantly, 10% of the CCGs are involved in chromatin remodeling, including Arid4b, Kdm6a, and Nsd3, and all SB tumors have at least one mutated gene involved in this process; 20 CCGs, including Ctnnd1, Fbxo11, and Vgll4, are also significantly associated with poor patient survival. SB mutagenesis provides a rich resource of mutations in potential cancer drivers for cross-comparative analyses with ongoing sequencing efforts in human pancreatic adenocarcinoma.
doi_str_mv 10.1073/pnas.1202490109
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3341075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41588451</jstor_id><sourcerecordid>41588451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-a5262ab2d4865f2f8f0a76959fa3541152e52a1efc9ea4cc266a3d2c5b5e7cbc3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EokvhzAmI1AuXtOPPTS5IUPElVeIAnK1ZZ7LNKrGDnRTtf19Hu2yBi-3R-83TjB9jLzlccljLq9FjuuQChKqBQ_2IrfLJS5PLx2wFINZlpYQ6Y89S2gFArSt4ys6EUIIrBSvmvvdEY-e3xQfCedoXwzzhljylLhWR7gj7VLgQRoo4LdiiT13wqUDfFCNOt79xn4rO57d3kbLoCmzIB4fRdT4M-Jw9abMNvTje5-znp48_rr-UN98-f71-f1M6DTCVqIURuBGNqoxuRVu1gGtT67pFqRXnWpAWyKl1NaFyThiDshFObzSt3cbJc_bu4DvOm4EaR36K2NsxdgPGvQ3Y2X8V393abbizUqr8mzobvD0axPBrpjTZoUuO-h49hTlZbozUkksOGb34D92FOfq8nuUAlVF58MXw6kC5GFKK1J6G4WCXAO0SoH0IMHe8_nuHE_8nsQy8OQJL54NdnaezupYqE68OxC5NIZ4QxXVVKc3lPXSprYg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1008646955</pqid></control><display><type>article</type><title>Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Mann, Karen M. ; Ward, Jerrold M. ; Yew, Christopher Chin Kuan ; Kovochich, Anne ; Dawson, David W. ; Black, Michael A. ; Brett, Benjamin T. ; Sheetz, Todd E. ; Dupuy, Adam J. ; Chang, David K. ; Biankin, Andrew V. ; Waddell, Nicola ; Kassahn, Karin S. ; Grimmond, Sean M. ; Rust, Alistair G. ; Adams, David J. ; Jenkins, Nancy A. ; Copeland, Neal G.</creator><creatorcontrib>Mann, Karen M. ; Ward, Jerrold M. ; Yew, Christopher Chin Kuan ; Kovochich, Anne ; Dawson, David W. ; Black, Michael A. ; Brett, Benjamin T. ; Sheetz, Todd E. ; Dupuy, Adam J. ; Chang, David K. ; Biankin, Andrew V. ; Waddell, Nicola ; Kassahn, Karin S. ; Grimmond, Sean M. ; Rust, Alistair G. ; Adams, David J. ; Jenkins, Nancy A. ; Copeland, Neal G. ; Australian Pancreatic Cancer Genome Initiative ; Australian Pancreatic Cancer Genome Initiative</creatorcontrib><description>Pancreatic cancer is one of the most deadly cancers affecting the Western world. Because the disease is highly metastatic and difficult to diagnosis until late stages, the 5-y survival rate is around 5%. The identification of molecular cancer drivers is critical for furthering our understanding of the disease and development of improved diagnostic tools and therapeutics. We have conducted a mutagenic screen using Sleeping Beauty (SB) in mice to identify new candidate cancer genes in pancreatic cancer. By combining SB with an oncogenic Kras allele, we observed highly metastatic pancreatic adenocarcinomas. Using two independent statistical methods to identify loci commonly mutated by SB in these tumors, we identified 681 loci that comprise 543 candidate cancer genes (CCGs); 75 of these CCGs, including Mll3 and Ptk2, have known mutations in human pancreatic cancer. We identified point mutations in human pancreatic patient samples for another 11 CCGs, including Acvr2a and Map2k4. Importantly, 10% of the CCGs are involved in chromatin remodeling, including Arid4b, Kdm6a, and Nsd3, and all SB tumors have at least one mutated gene involved in this process; 20 CCGs, including Ctnnd1, Fbxo11, and Vgll4, are also significantly associated with poor patient survival. SB mutagenesis provides a rich resource of mutations in potential cancer drivers for cross-comparative analyses with ongoing sequencing efforts in human pancreatic adenocarcinoma.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1202490109</identifier><identifier>PMID: 22421440</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenocarcinoma ; Adenocarcinoma - genetics ; Adenocarcinoma - metabolism ; Adenocarcinoma - pathology ; alleles ; Animals ; Biological Sciences ; Cancer ; Catenins ; Catenins - genetics ; Catenins - metabolism ; chromatin ; Disease Models, Animal ; DNA Transposable Elements ; DNA Transposable Elements - genetics ; Gene loci ; Genes ; Genes, ras ; Genes, ras - genetics ; Genetic mutation ; Genetic Predisposition to Disease ; Genetic Predisposition to Disease - genetics ; Genetic screening ; genetics ; Genome-Wide Association Study ; Genomes ; GTP-Binding Protein alpha Subunits ; GTP-Binding Protein alpha Subunits - genetics ; GTP-Binding Protein alpha Subunits - metabolism ; GTP-Binding Protein alpha Subunits, Gq-G11 ; Humans ; Immunohistochemistry ; loci ; metabolism ; metastasis ; Mice ; Mice, 129 Strain ; Mice, Transgenic ; Mutagenesis ; Mutagenesis, Insertional ; mutagenicity ; Mutation ; Oncogenes ; Pancreas ; Pancreas - metabolism ; Pancreas - pathology ; Pancreatic cancer ; Pancreatic neoplasms ; Pancreatic Neoplasms - genetics ; Pancreatic Neoplasms - metabolism ; Pancreatic Neoplasms - pathology ; pathology ; patients ; point mutation ; Rodents ; Signal Transduction ; Signal Transduction - genetics ; statistical analysis ; Survival Analysis ; survival rate ; therapeutics ; Transposons ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-04, Vol.109 (16), p.5934-5941</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Apr 17, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-a5262ab2d4865f2f8f0a76959fa3541152e52a1efc9ea4cc266a3d2c5b5e7cbc3</citedby><cites>FETCH-LOGICAL-c500t-a5262ab2d4865f2f8f0a76959fa3541152e52a1efc9ea4cc266a3d2c5b5e7cbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/16.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41588451$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41588451$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22421440$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mann, Karen M.</creatorcontrib><creatorcontrib>Ward, Jerrold M.</creatorcontrib><creatorcontrib>Yew, Christopher Chin Kuan</creatorcontrib><creatorcontrib>Kovochich, Anne</creatorcontrib><creatorcontrib>Dawson, David W.</creatorcontrib><creatorcontrib>Black, Michael A.</creatorcontrib><creatorcontrib>Brett, Benjamin T.</creatorcontrib><creatorcontrib>Sheetz, Todd E.</creatorcontrib><creatorcontrib>Dupuy, Adam J.</creatorcontrib><creatorcontrib>Chang, David K.</creatorcontrib><creatorcontrib>Biankin, Andrew V.</creatorcontrib><creatorcontrib>Waddell, Nicola</creatorcontrib><creatorcontrib>Kassahn, Karin S.</creatorcontrib><creatorcontrib>Grimmond, Sean M.</creatorcontrib><creatorcontrib>Rust, Alistair G.</creatorcontrib><creatorcontrib>Adams, David J.</creatorcontrib><creatorcontrib>Jenkins, Nancy A.</creatorcontrib><creatorcontrib>Copeland, Neal G.</creatorcontrib><creatorcontrib>Australian Pancreatic Cancer Genome Initiative</creatorcontrib><creatorcontrib>Australian Pancreatic Cancer Genome Initiative</creatorcontrib><title>Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Pancreatic cancer is one of the most deadly cancers affecting the Western world. Because the disease is highly metastatic and difficult to diagnosis until late stages, the 5-y survival rate is around 5%. The identification of molecular cancer drivers is critical for furthering our understanding of the disease and development of improved diagnostic tools and therapeutics. We have conducted a mutagenic screen using Sleeping Beauty (SB) in mice to identify new candidate cancer genes in pancreatic cancer. By combining SB with an oncogenic Kras allele, we observed highly metastatic pancreatic adenocarcinomas. Using two independent statistical methods to identify loci commonly mutated by SB in these tumors, we identified 681 loci that comprise 543 candidate cancer genes (CCGs); 75 of these CCGs, including Mll3 and Ptk2, have known mutations in human pancreatic cancer. We identified point mutations in human pancreatic patient samples for another 11 CCGs, including Acvr2a and Map2k4. Importantly, 10% of the CCGs are involved in chromatin remodeling, including Arid4b, Kdm6a, and Nsd3, and all SB tumors have at least one mutated gene involved in this process; 20 CCGs, including Ctnnd1, Fbxo11, and Vgll4, are also significantly associated with poor patient survival. SB mutagenesis provides a rich resource of mutations in potential cancer drivers for cross-comparative analyses with ongoing sequencing efforts in human pancreatic adenocarcinoma.</description><subject>Adenocarcinoma</subject><subject>Adenocarcinoma - genetics</subject><subject>Adenocarcinoma - metabolism</subject><subject>Adenocarcinoma - pathology</subject><subject>alleles</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cancer</subject><subject>Catenins</subject><subject>Catenins - genetics</subject><subject>Catenins - metabolism</subject><subject>chromatin</subject><subject>Disease Models, Animal</subject><subject>DNA Transposable Elements</subject><subject>DNA Transposable Elements - genetics</subject><subject>Gene loci</subject><subject>Genes</subject><subject>Genes, ras</subject><subject>Genes, ras - genetics</subject><subject>Genetic mutation</subject><subject>Genetic Predisposition to Disease</subject><subject>Genetic Predisposition to Disease - genetics</subject><subject>Genetic screening</subject><subject>genetics</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>GTP-Binding Protein alpha Subunits</subject><subject>GTP-Binding Protein alpha Subunits - genetics</subject><subject>GTP-Binding Protein alpha Subunits - metabolism</subject><subject>GTP-Binding Protein alpha Subunits, Gq-G11</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>loci</subject><subject>metabolism</subject><subject>metastasis</subject><subject>Mice</subject><subject>Mice, 129 Strain</subject><subject>Mice, Transgenic</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Insertional</subject><subject>mutagenicity</subject><subject>Mutation</subject><subject>Oncogenes</subject><subject>Pancreas</subject><subject>Pancreas - metabolism</subject><subject>Pancreas - pathology</subject><subject>Pancreatic cancer</subject><subject>Pancreatic neoplasms</subject><subject>Pancreatic Neoplasms - genetics</subject><subject>Pancreatic Neoplasms - metabolism</subject><subject>Pancreatic Neoplasms - pathology</subject><subject>pathology</subject><subject>patients</subject><subject>point mutation</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Signal Transduction - genetics</subject><subject>statistical analysis</subject><subject>Survival Analysis</subject><subject>survival rate</subject><subject>therapeutics</subject><subject>Transposons</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS0EokvhzAmI1AuXtOPPTS5IUPElVeIAnK1ZZ7LNKrGDnRTtf19Hu2yBi-3R-83TjB9jLzlccljLq9FjuuQChKqBQ_2IrfLJS5PLx2wFINZlpYQ6Y89S2gFArSt4ys6EUIIrBSvmvvdEY-e3xQfCedoXwzzhljylLhWR7gj7VLgQRoo4LdiiT13wqUDfFCNOt79xn4rO57d3kbLoCmzIB4fRdT4M-Jw9abMNvTje5-znp48_rr-UN98-f71-f1M6DTCVqIURuBGNqoxuRVu1gGtT67pFqRXnWpAWyKl1NaFyThiDshFObzSt3cbJc_bu4DvOm4EaR36K2NsxdgPGvQ3Y2X8V393abbizUqr8mzobvD0axPBrpjTZoUuO-h49hTlZbozUkksOGb34D92FOfq8nuUAlVF58MXw6kC5GFKK1J6G4WCXAO0SoH0IMHe8_nuHE_8nsQy8OQJL54NdnaezupYqE68OxC5NIZ4QxXVVKc3lPXSprYg</recordid><startdate>20120417</startdate><enddate>20120417</enddate><creator>Mann, Karen M.</creator><creator>Ward, Jerrold M.</creator><creator>Yew, Christopher Chin Kuan</creator><creator>Kovochich, Anne</creator><creator>Dawson, David W.</creator><creator>Black, Michael A.</creator><creator>Brett, Benjamin T.</creator><creator>Sheetz, Todd E.</creator><creator>Dupuy, Adam J.</creator><creator>Chang, David K.</creator><creator>Biankin, Andrew V.</creator><creator>Waddell, Nicola</creator><creator>Kassahn, Karin S.</creator><creator>Grimmond, Sean M.</creator><creator>Rust, Alistair G.</creator><creator>Adams, David J.</creator><creator>Jenkins, Nancy A.</creator><creator>Copeland, Neal G.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20120417</creationdate><title>Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma</title><author>Mann, Karen M. ; Ward, Jerrold M. ; Yew, Christopher Chin Kuan ; Kovochich, Anne ; Dawson, David W. ; Black, Michael A. ; Brett, Benjamin T. ; Sheetz, Todd E. ; Dupuy, Adam J. ; Chang, David K. ; Biankin, Andrew V. ; Waddell, Nicola ; Kassahn, Karin S. ; Grimmond, Sean M. ; Rust, Alistair G. ; Adams, David J. ; Jenkins, Nancy A. ; Copeland, Neal G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-a5262ab2d4865f2f8f0a76959fa3541152e52a1efc9ea4cc266a3d2c5b5e7cbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adenocarcinoma</topic><topic>Adenocarcinoma - genetics</topic><topic>Adenocarcinoma - metabolism</topic><topic>Adenocarcinoma - pathology</topic><topic>alleles</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cancer</topic><topic>Catenins</topic><topic>Catenins - genetics</topic><topic>Catenins - metabolism</topic><topic>chromatin</topic><topic>Disease Models, Animal</topic><topic>DNA Transposable Elements</topic><topic>DNA Transposable Elements - genetics</topic><topic>Gene loci</topic><topic>Genes</topic><topic>Genes, ras</topic><topic>Genes, ras - genetics</topic><topic>Genetic mutation</topic><topic>Genetic Predisposition to Disease</topic><topic>Genetic Predisposition to Disease - genetics</topic><topic>Genetic screening</topic><topic>genetics</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>GTP-Binding Protein alpha Subunits</topic><topic>GTP-Binding Protein alpha Subunits - genetics</topic><topic>GTP-Binding Protein alpha Subunits - metabolism</topic><topic>GTP-Binding Protein alpha Subunits, Gq-G11</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>loci</topic><topic>metabolism</topic><topic>metastasis</topic><topic>Mice</topic><topic>Mice, 129 Strain</topic><topic>Mice, Transgenic</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Insertional</topic><topic>mutagenicity</topic><topic>Mutation</topic><topic>Oncogenes</topic><topic>Pancreas</topic><topic>Pancreas - metabolism</topic><topic>Pancreas - pathology</topic><topic>Pancreatic cancer</topic><topic>Pancreatic neoplasms</topic><topic>Pancreatic Neoplasms - genetics</topic><topic>Pancreatic Neoplasms - metabolism</topic><topic>Pancreatic Neoplasms - pathology</topic><topic>pathology</topic><topic>patients</topic><topic>point mutation</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Signal Transduction - genetics</topic><topic>statistical analysis</topic><topic>Survival Analysis</topic><topic>survival rate</topic><topic>therapeutics</topic><topic>Transposons</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mann, Karen M.</creatorcontrib><creatorcontrib>Ward, Jerrold M.</creatorcontrib><creatorcontrib>Yew, Christopher Chin Kuan</creatorcontrib><creatorcontrib>Kovochich, Anne</creatorcontrib><creatorcontrib>Dawson, David W.</creatorcontrib><creatorcontrib>Black, Michael A.</creatorcontrib><creatorcontrib>Brett, Benjamin T.</creatorcontrib><creatorcontrib>Sheetz, Todd E.</creatorcontrib><creatorcontrib>Dupuy, Adam J.</creatorcontrib><creatorcontrib>Chang, David K.</creatorcontrib><creatorcontrib>Biankin, Andrew V.</creatorcontrib><creatorcontrib>Waddell, Nicola</creatorcontrib><creatorcontrib>Kassahn, Karin S.</creatorcontrib><creatorcontrib>Grimmond, Sean M.</creatorcontrib><creatorcontrib>Rust, Alistair G.</creatorcontrib><creatorcontrib>Adams, David J.</creatorcontrib><creatorcontrib>Jenkins, Nancy A.</creatorcontrib><creatorcontrib>Copeland, Neal G.</creatorcontrib><creatorcontrib>Australian Pancreatic Cancer Genome Initiative</creatorcontrib><creatorcontrib>Australian Pancreatic Cancer Genome Initiative</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mann, Karen M.</au><au>Ward, Jerrold M.</au><au>Yew, Christopher Chin Kuan</au><au>Kovochich, Anne</au><au>Dawson, David W.</au><au>Black, Michael A.</au><au>Brett, Benjamin T.</au><au>Sheetz, Todd E.</au><au>Dupuy, Adam J.</au><au>Chang, David K.</au><au>Biankin, Andrew V.</au><au>Waddell, Nicola</au><au>Kassahn, Karin S.</au><au>Grimmond, Sean M.</au><au>Rust, Alistair G.</au><au>Adams, David J.</au><au>Jenkins, Nancy A.</au><au>Copeland, Neal G.</au><aucorp>Australian Pancreatic Cancer Genome Initiative</aucorp><aucorp>Australian Pancreatic Cancer Genome Initiative</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-04-17</date><risdate>2012</risdate><volume>109</volume><issue>16</issue><spage>5934</spage><epage>5941</epage><pages>5934-5941</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Pancreatic cancer is one of the most deadly cancers affecting the Western world. Because the disease is highly metastatic and difficult to diagnosis until late stages, the 5-y survival rate is around 5%. The identification of molecular cancer drivers is critical for furthering our understanding of the disease and development of improved diagnostic tools and therapeutics. We have conducted a mutagenic screen using Sleeping Beauty (SB) in mice to identify new candidate cancer genes in pancreatic cancer. By combining SB with an oncogenic Kras allele, we observed highly metastatic pancreatic adenocarcinomas. Using two independent statistical methods to identify loci commonly mutated by SB in these tumors, we identified 681 loci that comprise 543 candidate cancer genes (CCGs); 75 of these CCGs, including Mll3 and Ptk2, have known mutations in human pancreatic cancer. We identified point mutations in human pancreatic patient samples for another 11 CCGs, including Acvr2a and Map2k4. Importantly, 10% of the CCGs are involved in chromatin remodeling, including Arid4b, Kdm6a, and Nsd3, and all SB tumors have at least one mutated gene involved in this process; 20 CCGs, including Ctnnd1, Fbxo11, and Vgll4, are also significantly associated with poor patient survival. SB mutagenesis provides a rich resource of mutations in potential cancer drivers for cross-comparative analyses with ongoing sequencing efforts in human pancreatic adenocarcinoma.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22421440</pmid><doi>10.1073/pnas.1202490109</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2012-04, Vol.109 (16), p.5934-5941
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3341075
source Jstor Complete Legacy; MEDLINE; Full-Text Journals in Chemistry (Open access); PubMed Central; Alma/SFX Local Collection
subjects Adenocarcinoma
Adenocarcinoma - genetics
Adenocarcinoma - metabolism
Adenocarcinoma - pathology
alleles
Animals
Biological Sciences
Cancer
Catenins
Catenins - genetics
Catenins - metabolism
chromatin
Disease Models, Animal
DNA Transposable Elements
DNA Transposable Elements - genetics
Gene loci
Genes
Genes, ras
Genes, ras - genetics
Genetic mutation
Genetic Predisposition to Disease
Genetic Predisposition to Disease - genetics
Genetic screening
genetics
Genome-Wide Association Study
Genomes
GTP-Binding Protein alpha Subunits
GTP-Binding Protein alpha Subunits - genetics
GTP-Binding Protein alpha Subunits - metabolism
GTP-Binding Protein alpha Subunits, Gq-G11
Humans
Immunohistochemistry
loci
metabolism
metastasis
Mice
Mice, 129 Strain
Mice, Transgenic
Mutagenesis
Mutagenesis, Insertional
mutagenicity
Mutation
Oncogenes
Pancreas
Pancreas - metabolism
Pancreas - pathology
Pancreatic cancer
Pancreatic neoplasms
Pancreatic Neoplasms - genetics
Pancreatic Neoplasms - metabolism
Pancreatic Neoplasms - pathology
pathology
patients
point mutation
Rodents
Signal Transduction
Signal Transduction - genetics
statistical analysis
Survival Analysis
survival rate
therapeutics
Transposons
Tumors
title Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A01%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sleeping%20Beauty%20mutagenesis%20reveals%20cooperating%20mutations%20and%20pathways%20in%20pancreatic%20adenocarcinoma&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Mann,%20Karen%20M.&rft.aucorp=Australian%20Pancreatic%20Cancer%20Genome%20Initiative&rft.date=2012-04-17&rft.volume=109&rft.issue=16&rft.spage=5934&rft.epage=5941&rft.pages=5934-5941&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1202490109&rft_dat=%3Cjstor_pubme%3E41588451%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1008646955&rft_id=info:pmid/22421440&rft_jstor_id=41588451&rfr_iscdi=true