A Common Dataset for Genomic Analysis of Livestock Populations

Abstract Although common datasets are an important resource for the scientific community and can be used to address important questions, genomic datasets of a meaningful size have not generally been available in livestock species. We describe a pig dataset that PIC (a Genus company) has made availab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:G3 : genes - genomes - genetics 2012-04, Vol.2 (4), p.429-435
Hauptverfasser: Cleveland, Matthew A, Hickey, John M, Forni, Selma
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 435
container_issue 4
container_start_page 429
container_title G3 : genes - genomes - genetics
container_volume 2
creator Cleveland, Matthew A
Hickey, John M
Forni, Selma
description Abstract Although common datasets are an important resource for the scientific community and can be used to address important questions, genomic datasets of a meaningful size have not generally been available in livestock species. We describe a pig dataset that PIC (a Genus company) has made available for comparing genomic prediction methods. We also describe genomic evaluation of the data using methods that PIC considers best practice for predicting and validating genomic breeding values, and we discuss the impact of data structure on accuracy. The dataset contains 3534 individuals with high-density genotypes, phenotypes, and estimated breeding values for five traits. Genomic breeding values were calculated using BayesB, with phenotypes and de-regressed breeding values, and using a single-step genomic BLUP approach that combines information from genotyped and un-genotyped animals. The genomic breeding value accuracy increased with increased trait heritability and with increased relationship between training and validation. In nearly all cases, BayesB using de-regressed breeding values outperformed the other approaches, but the single-step evaluation performed only slightly worse. This dataset was useful for comparing methods for genomic prediction using real data. Our results indicate that validation approaches accounting for relatedness between populations can correct for potential overestimation of genomic breeding value accuracies, with implications for genotyping strategies to carry out genomic selection programs.
doi_str_mv 10.1534/g3.111.001453
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3337471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1534/g3.111.001453</oup_id><sourcerecordid>1010230556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-83d2556fcf7b1a92ab5c816d1ea1fb9cc98009543f91afca320ef0ce530e166b3</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxS0EolXpyIo8sqT4_NVmqVQVKEiVYIDZcly7GJI4xEml_vekaoEyccuddE_v3f0QugQyAsH4zZqNAGBECHDBTlCfgiQJTJg8PZp7aBjjO-lKCCm5PEc9SgUnhPE-ms7wPBRFKPGtbnS0DXahxgtbhsIbPCt1vo0-4uDw0m9sbIL5wM-hanPd-FDGC3TmdB7t8NAH6PX-7mX-kCyfFo_z2TIxnJImmbAV7cKdceMMdEp1JswE5AqsBpelxqQTQlLBmUtBO6MZJdYRYwUjFqTM2ABN975VmxV2ZWzZ1DpXVe0LXW9V0F793ZT-Ta3DRjHGxnwMncH1waAOn233iCp8NDbPdWlDGxUQIJTtCHXSZC81dYixtu4nBojaYVdrpjrsao-9018d3_aj_ob8mx3a6h-vL6oLiWE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010230556</pqid></control><display><type>article</type><title>A Common Dataset for Genomic Analysis of Livestock Populations</title><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Cleveland, Matthew A ; Hickey, John M ; Forni, Selma</creator><creatorcontrib>Cleveland, Matthew A ; Hickey, John M ; Forni, Selma</creatorcontrib><description>Abstract Although common datasets are an important resource for the scientific community and can be used to address important questions, genomic datasets of a meaningful size have not generally been available in livestock species. We describe a pig dataset that PIC (a Genus company) has made available for comparing genomic prediction methods. We also describe genomic evaluation of the data using methods that PIC considers best practice for predicting and validating genomic breeding values, and we discuss the impact of data structure on accuracy. The dataset contains 3534 individuals with high-density genotypes, phenotypes, and estimated breeding values for five traits. Genomic breeding values were calculated using BayesB, with phenotypes and de-regressed breeding values, and using a single-step genomic BLUP approach that combines information from genotyped and un-genotyped animals. The genomic breeding value accuracy increased with increased trait heritability and with increased relationship between training and validation. In nearly all cases, BayesB using de-regressed breeding values outperformed the other approaches, but the single-step evaluation performed only slightly worse. This dataset was useful for comparing methods for genomic prediction using real data. Our results indicate that validation approaches accounting for relatedness between populations can correct for potential overestimation of genomic breeding value accuracies, with implications for genotyping strategies to carry out genomic selection programs.</description><identifier>ISSN: 2160-1836</identifier><identifier>EISSN: 2160-1836</identifier><identifier>DOI: 10.1534/g3.111.001453</identifier><identifier>PMID: 22540034</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Investigations</subject><ispartof>G3 : genes - genomes - genetics, 2012-04, Vol.2 (4), p.429-435</ispartof><rights>2012 Cleveland et al . 2012</rights><rights>Copyright © 2012 Cleveland . 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-83d2556fcf7b1a92ab5c816d1ea1fb9cc98009543f91afca320ef0ce530e166b3</citedby><cites>FETCH-LOGICAL-c420t-83d2556fcf7b1a92ab5c816d1ea1fb9cc98009543f91afca320ef0ce530e166b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3337471/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3337471/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22540034$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cleveland, Matthew A</creatorcontrib><creatorcontrib>Hickey, John M</creatorcontrib><creatorcontrib>Forni, Selma</creatorcontrib><title>A Common Dataset for Genomic Analysis of Livestock Populations</title><title>G3 : genes - genomes - genetics</title><addtitle>G3 (Bethesda)</addtitle><description>Abstract Although common datasets are an important resource for the scientific community and can be used to address important questions, genomic datasets of a meaningful size have not generally been available in livestock species. We describe a pig dataset that PIC (a Genus company) has made available for comparing genomic prediction methods. We also describe genomic evaluation of the data using methods that PIC considers best practice for predicting and validating genomic breeding values, and we discuss the impact of data structure on accuracy. The dataset contains 3534 individuals with high-density genotypes, phenotypes, and estimated breeding values for five traits. Genomic breeding values were calculated using BayesB, with phenotypes and de-regressed breeding values, and using a single-step genomic BLUP approach that combines information from genotyped and un-genotyped animals. The genomic breeding value accuracy increased with increased trait heritability and with increased relationship between training and validation. In nearly all cases, BayesB using de-regressed breeding values outperformed the other approaches, but the single-step evaluation performed only slightly worse. This dataset was useful for comparing methods for genomic prediction using real data. Our results indicate that validation approaches accounting for relatedness between populations can correct for potential overestimation of genomic breeding value accuracies, with implications for genotyping strategies to carry out genomic selection programs.</description><subject>Investigations</subject><issn>2160-1836</issn><issn>2160-1836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkL1PwzAQxS0EolXpyIo8sqT4_NVmqVQVKEiVYIDZcly7GJI4xEml_vekaoEyccuddE_v3f0QugQyAsH4zZqNAGBECHDBTlCfgiQJTJg8PZp7aBjjO-lKCCm5PEc9SgUnhPE-ms7wPBRFKPGtbnS0DXahxgtbhsIbPCt1vo0-4uDw0m9sbIL5wM-hanPd-FDGC3TmdB7t8NAH6PX-7mX-kCyfFo_z2TIxnJImmbAV7cKdceMMdEp1JswE5AqsBpelxqQTQlLBmUtBO6MZJdYRYwUjFqTM2ABN975VmxV2ZWzZ1DpXVe0LXW9V0F793ZT-Ta3DRjHGxnwMncH1waAOn233iCp8NDbPdWlDGxUQIJTtCHXSZC81dYixtu4nBojaYVdrpjrsao-9018d3_aj_ob8mx3a6h-vL6oLiWE</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Cleveland, Matthew A</creator><creator>Hickey, John M</creator><creator>Forni, Selma</creator><general>Oxford University Press</general><general>Genetics Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201204</creationdate><title>A Common Dataset for Genomic Analysis of Livestock Populations</title><author>Cleveland, Matthew A ; Hickey, John M ; Forni, Selma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-83d2556fcf7b1a92ab5c816d1ea1fb9cc98009543f91afca320ef0ce530e166b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Investigations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cleveland, Matthew A</creatorcontrib><creatorcontrib>Hickey, John M</creatorcontrib><creatorcontrib>Forni, Selma</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>G3 : genes - genomes - genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cleveland, Matthew A</au><au>Hickey, John M</au><au>Forni, Selma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Common Dataset for Genomic Analysis of Livestock Populations</atitle><jtitle>G3 : genes - genomes - genetics</jtitle><addtitle>G3 (Bethesda)</addtitle><date>2012-04</date><risdate>2012</risdate><volume>2</volume><issue>4</issue><spage>429</spage><epage>435</epage><pages>429-435</pages><issn>2160-1836</issn><eissn>2160-1836</eissn><abstract>Abstract Although common datasets are an important resource for the scientific community and can be used to address important questions, genomic datasets of a meaningful size have not generally been available in livestock species. We describe a pig dataset that PIC (a Genus company) has made available for comparing genomic prediction methods. We also describe genomic evaluation of the data using methods that PIC considers best practice for predicting and validating genomic breeding values, and we discuss the impact of data structure on accuracy. The dataset contains 3534 individuals with high-density genotypes, phenotypes, and estimated breeding values for five traits. Genomic breeding values were calculated using BayesB, with phenotypes and de-regressed breeding values, and using a single-step genomic BLUP approach that combines information from genotyped and un-genotyped animals. The genomic breeding value accuracy increased with increased trait heritability and with increased relationship between training and validation. In nearly all cases, BayesB using de-regressed breeding values outperformed the other approaches, but the single-step evaluation performed only slightly worse. This dataset was useful for comparing methods for genomic prediction using real data. Our results indicate that validation approaches accounting for relatedness between populations can correct for potential overestimation of genomic breeding value accuracies, with implications for genotyping strategies to carry out genomic selection programs.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>22540034</pmid><doi>10.1534/g3.111.001453</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2160-1836
ispartof G3 : genes - genomes - genetics, 2012-04, Vol.2 (4), p.429-435
issn 2160-1836
2160-1836
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3337471
source DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Investigations
title A Common Dataset for Genomic Analysis of Livestock Populations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A51%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Common%20Dataset%20for%20Genomic%20Analysis%20of%20Livestock%20Populations&rft.jtitle=G3%20:%20genes%20-%20genomes%20-%20genetics&rft.au=Cleveland,%20Matthew%20A&rft.date=2012-04&rft.volume=2&rft.issue=4&rft.spage=429&rft.epage=435&rft.pages=429-435&rft.issn=2160-1836&rft.eissn=2160-1836&rft_id=info:doi/10.1534/g3.111.001453&rft_dat=%3Cproquest_pubme%3E1010230556%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010230556&rft_id=info:pmid/22540034&rft_oup_id=10.1534/g3.111.001453&rfr_iscdi=true