Conservation of Plastid Sequences in the Plant Nuclear Genome for Millions of Years Facilitates Endosymbiotic Evolution

The nuclear genome of eukaryotes contains large amounts of cytoplasmic organelle DNA (nuclear integrants of organelle DNA [norgs]). The recent sequencing of many mitochondrial and chloroplast genomes has enabled investigation of the potential role of norgs in endosymbiotic evolution. In this article...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2011-12, Vol.157 (4), p.2181-2193
Hauptverfasser: Rousseau-Gueutin, Mathieu, Ayliffe, Michael A., Timmis, Jeremy N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2193
container_issue 4
container_start_page 2181
container_title Plant physiology (Bethesda)
container_volume 157
creator Rousseau-Gueutin, Mathieu
Ayliffe, Michael A.
Timmis, Jeremy N.
description The nuclear genome of eukaryotes contains large amounts of cytoplasmic organelle DNA (nuclear integrants of organelle DNA [norgs]). The recent sequencing of many mitochondrial and chloroplast genomes has enabled investigation of the potential role of norgs in endosymbiotic evolution. In this article, we describe a new polymerase chain reaction-based method that allows the identification and evolutionary study of recent and older norgs in a range of eukaryotes. We tested this method in the genus Nicotiana and obtained sequences from seven nuclear integrants of plastid DNA (nupts) totaling 25 kb in length. These nupts were estimated to have been transferred 0.033 to 5.81 million years ago. The spectrum of mutations present in the potential protein-coding sequences compared with the noncoding sequences of each nupt revealed that nupts evolve in a nuclear-specific manner and are under neutral evolution. Indels were more frequent in noncoding regions than in potential coding sequences of former chloroplastic DNA, most probably due to the presence of a higher number of homopolymeric sequences. Unexpectedly, some potential protein-coding sequences within the nupts still contained intact open reading frames for up to 5.81 million years. These results suggest that chloroplast genes transferred to the nucleus have in some cases several millions of years to acquire nuclear regulatory elements and become functional. The different factors influencing this time frame and the potential role of nupts in endosymbiotic gene transfer are discussed.
doi_str_mv 10.1104/pp.111.185074
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3327181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41435660</jstor_id><sourcerecordid>41435660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-b5ec4b5ad9ae0994e93665d863c67ffea056e67dd9519a3952942c3b7474dda53</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EokvhyBHkG-KQYscfiS9I1WrbIi0fEnDgZDnOhHWVxKntLOp_j6OUFXAay-_33mhmEHpJyQWlhL-bplzpBa0FqfgjtKGClUUpeP0YbQjJb1LX6gw9i_GWEEIZ5U_RWVkSxmVZbdCvrR8jhKNJzo_Yd_hLb2JyLf4KdzOMFiJ2I04HWIQx4U-z7cEEfA2jHwB3PuCPru-zOS7uH1mL-MpY17tkUnbvxtbH-6FxPjmLd0ffz0ur5-hJZ_oILx7qOfp-tfu2vSn2n68_bC_3hRWkTkUjwPJGmFYZIEpxUExK0daSWVl1HRgiJMiqbZWgyjAlSsVLy5qKV7xtjWDn6P2aO83NAK2FMQXT6ym4wYR77Y3T_yqjO-if_qgZKyta0xzwdg04_Ge7udzr5Y8wljkhjgv75qFZ8Hl7MenBRQt93hz4OWpFapKnIHUmi5W0wccYoDtFU6KXu-ppypXq9a6Zf_33GCf6zyEz8GoFbmPy4aRzypmQkrDfs0uplQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>908009908</pqid></control><display><type>article</type><title>Conservation of Plastid Sequences in the Plant Nuclear Genome for Millions of Years Facilitates Endosymbiotic Evolution</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Rousseau-Gueutin, Mathieu ; Ayliffe, Michael A. ; Timmis, Jeremy N.</creator><creatorcontrib>Rousseau-Gueutin, Mathieu ; Ayliffe, Michael A. ; Timmis, Jeremy N.</creatorcontrib><description>The nuclear genome of eukaryotes contains large amounts of cytoplasmic organelle DNA (nuclear integrants of organelle DNA [norgs]). The recent sequencing of many mitochondrial and chloroplast genomes has enabled investigation of the potential role of norgs in endosymbiotic evolution. In this article, we describe a new polymerase chain reaction-based method that allows the identification and evolutionary study of recent and older norgs in a range of eukaryotes. We tested this method in the genus Nicotiana and obtained sequences from seven nuclear integrants of plastid DNA (nupts) totaling 25 kb in length. These nupts were estimated to have been transferred 0.033 to 5.81 million years ago. The spectrum of mutations present in the potential protein-coding sequences compared with the noncoding sequences of each nupt revealed that nupts evolve in a nuclear-specific manner and are under neutral evolution. Indels were more frequent in noncoding regions than in potential coding sequences of former chloroplastic DNA, most probably due to the presence of a higher number of homopolymeric sequences. Unexpectedly, some potential protein-coding sequences within the nupts still contained intact open reading frames for up to 5.81 million years. These results suggest that chloroplast genes transferred to the nucleus have in some cases several millions of years to acquire nuclear regulatory elements and become functional. The different factors influencing this time frame and the potential role of nupts in endosymbiotic gene transfer are discussed.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.111.185074</identifier><identifier>PMID: 22034627</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Base Sequence ; Biodiversity ; Cell Nucleus - genetics ; Chloroplasts ; Chloroplasts - genetics ; DNA ; DNA Primers - genetics ; DNA, Chloroplast - genetics ; DNA, Plant - genetics ; Evolution ; Evolution, Molecular ; Genes ; Genes, Plant - genetics ; Genetic mutation ; GENETICS, GENOMICS, AND MOLECULAR EVOLUTION ; Genome, Chloroplast - genetics ; Genome, Plant - genetics ; Genomes ; Life Sciences ; Molecular Sequence Data ; Mutation ; Nicotiana - genetics ; Nucleotides ; Open reading frames ; Organelles ; Phylogeny ; Plastids ; Plastids - genetics ; Polymerase Chain Reaction - methods ; Populations and Evolution ; Sequence Alignment ; Sequence Analysis, DNA ; Symbiosis ; Time Factors</subject><ispartof>Plant physiology (Bethesda), 2011-12, Vol.157 (4), p.2181-2193</ispartof><rights>2011 American Society of Plant Biologists</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2011 American Society of Plant Biologists. All rights reserved. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-b5ec4b5ad9ae0994e93665d863c67ffea056e67dd9519a3952942c3b7474dda53</citedby><cites>FETCH-LOGICAL-c508t-b5ec4b5ad9ae0994e93665d863c67ffea056e67dd9519a3952942c3b7474dda53</cites><orcidid>0000-0002-1130-1090</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41435660$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41435660$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,27923,27924,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22034627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-03318155$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rousseau-Gueutin, Mathieu</creatorcontrib><creatorcontrib>Ayliffe, Michael A.</creatorcontrib><creatorcontrib>Timmis, Jeremy N.</creatorcontrib><title>Conservation of Plastid Sequences in the Plant Nuclear Genome for Millions of Years Facilitates Endosymbiotic Evolution</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>The nuclear genome of eukaryotes contains large amounts of cytoplasmic organelle DNA (nuclear integrants of organelle DNA [norgs]). The recent sequencing of many mitochondrial and chloroplast genomes has enabled investigation of the potential role of norgs in endosymbiotic evolution. In this article, we describe a new polymerase chain reaction-based method that allows the identification and evolutionary study of recent and older norgs in a range of eukaryotes. We tested this method in the genus Nicotiana and obtained sequences from seven nuclear integrants of plastid DNA (nupts) totaling 25 kb in length. These nupts were estimated to have been transferred 0.033 to 5.81 million years ago. The spectrum of mutations present in the potential protein-coding sequences compared with the noncoding sequences of each nupt revealed that nupts evolve in a nuclear-specific manner and are under neutral evolution. Indels were more frequent in noncoding regions than in potential coding sequences of former chloroplastic DNA, most probably due to the presence of a higher number of homopolymeric sequences. Unexpectedly, some potential protein-coding sequences within the nupts still contained intact open reading frames for up to 5.81 million years. These results suggest that chloroplast genes transferred to the nucleus have in some cases several millions of years to acquire nuclear regulatory elements and become functional. The different factors influencing this time frame and the potential role of nupts in endosymbiotic gene transfer are discussed.</description><subject>Base Sequence</subject><subject>Biodiversity</subject><subject>Cell Nucleus - genetics</subject><subject>Chloroplasts</subject><subject>Chloroplasts - genetics</subject><subject>DNA</subject><subject>DNA Primers - genetics</subject><subject>DNA, Chloroplast - genetics</subject><subject>DNA, Plant - genetics</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Genes</subject><subject>Genes, Plant - genetics</subject><subject>Genetic mutation</subject><subject>GENETICS, GENOMICS, AND MOLECULAR EVOLUTION</subject><subject>Genome, Chloroplast - genetics</subject><subject>Genome, Plant - genetics</subject><subject>Genomes</subject><subject>Life Sciences</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Nicotiana - genetics</subject><subject>Nucleotides</subject><subject>Open reading frames</subject><subject>Organelles</subject><subject>Phylogeny</subject><subject>Plastids</subject><subject>Plastids - genetics</subject><subject>Polymerase Chain Reaction - methods</subject><subject>Populations and Evolution</subject><subject>Sequence Alignment</subject><subject>Sequence Analysis, DNA</subject><subject>Symbiosis</subject><subject>Time Factors</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS0EokvhyBHkG-KQYscfiS9I1WrbIi0fEnDgZDnOhHWVxKntLOp_j6OUFXAay-_33mhmEHpJyQWlhL-bplzpBa0FqfgjtKGClUUpeP0YbQjJb1LX6gw9i_GWEEIZ5U_RWVkSxmVZbdCvrR8jhKNJzo_Yd_hLb2JyLf4KdzOMFiJ2I04HWIQx4U-z7cEEfA2jHwB3PuCPru-zOS7uH1mL-MpY17tkUnbvxtbH-6FxPjmLd0ffz0ur5-hJZ_oILx7qOfp-tfu2vSn2n68_bC_3hRWkTkUjwPJGmFYZIEpxUExK0daSWVl1HRgiJMiqbZWgyjAlSsVLy5qKV7xtjWDn6P2aO83NAK2FMQXT6ym4wYR77Y3T_yqjO-if_qgZKyta0xzwdg04_Ge7udzr5Y8wljkhjgv75qFZ8Hl7MenBRQt93hz4OWpFapKnIHUmi5W0wccYoDtFU6KXu-ppypXq9a6Zf_33GCf6zyEz8GoFbmPy4aRzypmQkrDfs0uplQ</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Rousseau-Gueutin, Mathieu</creator><creator>Ayliffe, Michael A.</creator><creator>Timmis, Jeremy N.</creator><general>American Society of Plant Biologists</general><general>Oxford University Press ; American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1130-1090</orcidid></search><sort><creationdate>20111201</creationdate><title>Conservation of Plastid Sequences in the Plant Nuclear Genome for Millions of Years Facilitates Endosymbiotic Evolution</title><author>Rousseau-Gueutin, Mathieu ; Ayliffe, Michael A. ; Timmis, Jeremy N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-b5ec4b5ad9ae0994e93665d863c67ffea056e67dd9519a3952942c3b7474dda53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Base Sequence</topic><topic>Biodiversity</topic><topic>Cell Nucleus - genetics</topic><topic>Chloroplasts</topic><topic>Chloroplasts - genetics</topic><topic>DNA</topic><topic>DNA Primers - genetics</topic><topic>DNA, Chloroplast - genetics</topic><topic>DNA, Plant - genetics</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Genes</topic><topic>Genes, Plant - genetics</topic><topic>Genetic mutation</topic><topic>GENETICS, GENOMICS, AND MOLECULAR EVOLUTION</topic><topic>Genome, Chloroplast - genetics</topic><topic>Genome, Plant - genetics</topic><topic>Genomes</topic><topic>Life Sciences</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Nicotiana - genetics</topic><topic>Nucleotides</topic><topic>Open reading frames</topic><topic>Organelles</topic><topic>Phylogeny</topic><topic>Plastids</topic><topic>Plastids - genetics</topic><topic>Polymerase Chain Reaction - methods</topic><topic>Populations and Evolution</topic><topic>Sequence Alignment</topic><topic>Sequence Analysis, DNA</topic><topic>Symbiosis</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rousseau-Gueutin, Mathieu</creatorcontrib><creatorcontrib>Ayliffe, Michael A.</creatorcontrib><creatorcontrib>Timmis, Jeremy N.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rousseau-Gueutin, Mathieu</au><au>Ayliffe, Michael A.</au><au>Timmis, Jeremy N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conservation of Plastid Sequences in the Plant Nuclear Genome for Millions of Years Facilitates Endosymbiotic Evolution</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>157</volume><issue>4</issue><spage>2181</spage><epage>2193</epage><pages>2181-2193</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><abstract>The nuclear genome of eukaryotes contains large amounts of cytoplasmic organelle DNA (nuclear integrants of organelle DNA [norgs]). The recent sequencing of many mitochondrial and chloroplast genomes has enabled investigation of the potential role of norgs in endosymbiotic evolution. In this article, we describe a new polymerase chain reaction-based method that allows the identification and evolutionary study of recent and older norgs in a range of eukaryotes. We tested this method in the genus Nicotiana and obtained sequences from seven nuclear integrants of plastid DNA (nupts) totaling 25 kb in length. These nupts were estimated to have been transferred 0.033 to 5.81 million years ago. The spectrum of mutations present in the potential protein-coding sequences compared with the noncoding sequences of each nupt revealed that nupts evolve in a nuclear-specific manner and are under neutral evolution. Indels were more frequent in noncoding regions than in potential coding sequences of former chloroplastic DNA, most probably due to the presence of a higher number of homopolymeric sequences. Unexpectedly, some potential protein-coding sequences within the nupts still contained intact open reading frames for up to 5.81 million years. These results suggest that chloroplast genes transferred to the nucleus have in some cases several millions of years to acquire nuclear regulatory elements and become functional. The different factors influencing this time frame and the potential role of nupts in endosymbiotic gene transfer are discussed.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>22034627</pmid><doi>10.1104/pp.111.185074</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1130-1090</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2011-12, Vol.157 (4), p.2181-2193
issn 0032-0889
1532-2548
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3327181
source MEDLINE; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects Base Sequence
Biodiversity
Cell Nucleus - genetics
Chloroplasts
Chloroplasts - genetics
DNA
DNA Primers - genetics
DNA, Chloroplast - genetics
DNA, Plant - genetics
Evolution
Evolution, Molecular
Genes
Genes, Plant - genetics
Genetic mutation
GENETICS, GENOMICS, AND MOLECULAR EVOLUTION
Genome, Chloroplast - genetics
Genome, Plant - genetics
Genomes
Life Sciences
Molecular Sequence Data
Mutation
Nicotiana - genetics
Nucleotides
Open reading frames
Organelles
Phylogeny
Plastids
Plastids - genetics
Polymerase Chain Reaction - methods
Populations and Evolution
Sequence Alignment
Sequence Analysis, DNA
Symbiosis
Time Factors
title Conservation of Plastid Sequences in the Plant Nuclear Genome for Millions of Years Facilitates Endosymbiotic Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A15%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conservation%20of%20Plastid%20Sequences%20in%20the%20Plant%20Nuclear%20Genome%20for%20Millions%20of%20Years%20Facilitates%20Endosymbiotic%20Evolution&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Rousseau-Gueutin,%20Mathieu&rft.date=2011-12-01&rft.volume=157&rft.issue=4&rft.spage=2181&rft.epage=2193&rft.pages=2181-2193&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.111.185074&rft_dat=%3Cjstor_pubme%3E41435660%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=908009908&rft_id=info:pmid/22034627&rft_jstor_id=41435660&rfr_iscdi=true