Evidence for a new Z-type left-handed DNA helix : properties of Z(WC)-DNA
The structure of Z-DNA, currently accepted as a model for all left-handed DNAs, fails to provide convincing explanations for at least four well established properties of left-handed DNA polymers in solution. However, the major discrepancies between theory and experiment are resolved by the structure...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 1990-10, Vol.18 (20), p.6119-6126 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The structure of Z-DNA, currently accepted as a model for all left-handed DNAs, fails to provide convincing explanations for at least four well established properties of left-handed DNA polymers in solution. However, the major discrepancies between theory and experiment are resolved by the structure presently proposed for Z[WC]-DNA, a new left-handed, zig-zag double helix with Watson-Crick-type backbone directions. Structural features of Z[WC]-DNA include the presence of an additional H-bond between each guanine N2-amino group and an adjacent phosphate oxygen, the capacity to form four-stranded, base-matched complexes that should readily precipitate from solution, and backbone progressions that are the same as B-DNA (opposite to Z-DNA). However, since Z[WC]-DNA and Z-DNA have many parameters in common, they could be difficult to distinguish in a majority of existing experiments. In view of the close relationship of the new helix to B-DNA, which allows a relatively unhindered right-to-left transition in handedness, Z[WC]-DNA is theorized to be the left-handed structure preferentially generated in vivo by the torque available in naturally occurring DNA supercoils. |
---|---|
ISSN: | 0305-1048 1362-4962 |
DOI: | 10.1093/nar/18.20.6119 |