Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment

Mutations in phosphatase and tensin homologue‐induced kinase 1 (PINK1) cause recessively inherited Parkinson's disease (PD), a neurodegenerative disorder linked to mitochondrial dysfunction. In healthy mitochondria, PINK1 is rapidly degraded in a process involving both mitochondrial proteases a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EMBO reports 2012-04, Vol.13 (4), p.378-385
Hauptverfasser: Greene, Andrew W, Grenier, Karl, Aguileta, Miguel A, Muise, Stephanie, Farazifard, Rasoul, Haque, M Emdadul, McBride, Heidi M, Park, David S, Fon, Edward A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 385
container_issue 4
container_start_page 378
container_title EMBO reports
container_volume 13
creator Greene, Andrew W
Grenier, Karl
Aguileta, Miguel A
Muise, Stephanie
Farazifard, Rasoul
Haque, M Emdadul
McBride, Heidi M
Park, David S
Fon, Edward A
description Mutations in phosphatase and tensin homologue‐induced kinase 1 (PINK1) cause recessively inherited Parkinson's disease (PD), a neurodegenerative disorder linked to mitochondrial dysfunction. In healthy mitochondria, PINK1 is rapidly degraded in a process involving both mitochondrial proteases and the proteasome. However, when mitochondrial import is compromised by depolarization, PINK1 accumulates on the mitochondrial surface where it recruits the PD‐linked E3 ubiquitin ligase Parkin from the cytosol, which in turn mediates the autophagic destruction of the dysfunctional organelles. Using an unbiased RNA‐mediated interference (RNAi)‐based screen, we identified four mitochondrial proteases, mitochondrial processing peptidase (MPP), presenilin‐associated rhomboid‐like protease (PARL), m‐AAA and ClpXP, involved in PINK1 degradation. We find that PINK1 turnover is particularly sensitive to even modest reductions in MPP levels. Moreover, PINK1 cleavage by MPP is coupled to import such that reducing MPP activity induces PINK1 accumulation at the mitochondrial surface, leading to Parkin recruitment and mitophagy. These results highlight a new role for MPP in PINK1 import and mitochondrial quality control via the PINK1–Parkin pathway. Dysfunctional mitochondria express high surface levels of the Parkinson's disease‐linked protein PINK1, which in turn recruits Parkin for mitophagy. Fon and colleagues now show that levels of PINK1 are kept low in normal mitochondria through degradation by the mitochondrial processing peptidase (MPP).
doi_str_mv 10.1038/embor.2012.14
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3321149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661247761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6044-fbbcd3d0671b4439ee1915bc64361c4e3e78cddbb6ec9dcdf312e2cc557510843</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EoqXlyBVF4koWj-0kzgWJVqVUu90WBIIDkuXYs1uXJA520tJ_T7a7rLYS6skj-Zv3nuYR8groBCiX77CpfJgwCmwC4gnZB5GXKYdCPt3MjMGPPfIixmtKaVYW8jnZY4xngkq5T36eu96bK9_a4HSddMEbjNG1y6TDrndWR0wCLoda9xiTy7P5FHagt4lrOh_6RLc2udThl2tH2oTB9Q22_SF5ttB1xJeb94B8-3jy9fhTOrs4PTv-MEtNToVIF1VlLLc0L6ASgpeIUEJWmVzwHIxAjoU01lZVjqa0xi44MGTGZFmRAZWCH5D3a91uqBq0ZrQOulZdcI0Od8prpx7-tO5KLf2N4pwBiHIUeLMRCP73gLFX134I7ZhZAQWeF4KLYqTSNWWCjzHgYusAVK3KUPdlqFUZClaxXu_G2tL_rj8C2Rq4dTXePa6mTs6Pvqzme-HJei-OK-0Sw27c_yfZJHexxz9bo7EwlRe8yNT3-an6PJd0OpNTNeV_AboUt_s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1013674347</pqid></control><display><type>article</type><title>Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Greene, Andrew W ; Grenier, Karl ; Aguileta, Miguel A ; Muise, Stephanie ; Farazifard, Rasoul ; Haque, M Emdadul ; McBride, Heidi M ; Park, David S ; Fon, Edward A</creator><creatorcontrib>Greene, Andrew W ; Grenier, Karl ; Aguileta, Miguel A ; Muise, Stephanie ; Farazifard, Rasoul ; Haque, M Emdadul ; McBride, Heidi M ; Park, David S ; Fon, Edward A</creatorcontrib><description>Mutations in phosphatase and tensin homologue‐induced kinase 1 (PINK1) cause recessively inherited Parkinson's disease (PD), a neurodegenerative disorder linked to mitochondrial dysfunction. In healthy mitochondria, PINK1 is rapidly degraded in a process involving both mitochondrial proteases and the proteasome. However, when mitochondrial import is compromised by depolarization, PINK1 accumulates on the mitochondrial surface where it recruits the PD‐linked E3 ubiquitin ligase Parkin from the cytosol, which in turn mediates the autophagic destruction of the dysfunctional organelles. Using an unbiased RNA‐mediated interference (RNAi)‐based screen, we identified four mitochondrial proteases, mitochondrial processing peptidase (MPP), presenilin‐associated rhomboid‐like protease (PARL), m‐AAA and ClpXP, involved in PINK1 degradation. We find that PINK1 turnover is particularly sensitive to even modest reductions in MPP levels. Moreover, PINK1 cleavage by MPP is coupled to import such that reducing MPP activity induces PINK1 accumulation at the mitochondrial surface, leading to Parkin recruitment and mitophagy. These results highlight a new role for MPP in PINK1 import and mitochondrial quality control via the PINK1–Parkin pathway. Dysfunctional mitochondria express high surface levels of the Parkinson's disease‐linked protein PINK1, which in turn recruits Parkin for mitophagy. Fon and colleagues now show that levels of PINK1 are kept low in normal mitochondria through degradation by the mitochondrial processing peptidase (MPP).</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.1038/embor.2012.14</identifier><identifier>PMID: 22354088</identifier><identifier>CODEN: ERMEAX</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>ATP-Dependent Proteases - metabolism ; ATPases Associated with Diverse Cellular Activities ; Autophagy - drug effects ; Carbonyl Cyanide m-Chlorophenyl Hydrazone - pharmacology ; EMBO21 ; EMBO24 ; EMBO31 ; Endopeptidase Clp - metabolism ; Gene Knockdown Techniques ; HEK293 Cells ; Humans ; Kinases ; Metalloendopeptidases - metabolism ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Mitochondrial Processing Peptidase ; mitophagy ; Molecular Weight ; Mutation ; Parkinson's disease ; Peptide Fragments - metabolism ; PINK1 ; Proteases ; Proteasome Endopeptidase Complex - metabolism ; Protein Kinases - metabolism ; Protein Processing, Post-Translational - drug effects ; Protein Transport - drug effects ; Quality control ; RNA, Small Interfering - metabolism ; Scientific Report ; Scientific Reports ; Ubiquitin-Protein Ligases - metabolism</subject><ispartof>EMBO reports, 2012-04, Vol.13 (4), p.378-385</ispartof><rights>European Molecular Biology Organization 2012</rights><rights>Copyright © 2012 European Molecular Biology Organization</rights><rights>Copyright Nature Publishing Group Apr 2012</rights><rights>Copyright © 2012, European Molecular Biology Organization 2012 European Molecular Biology Organization</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6044-fbbcd3d0671b4439ee1915bc64361c4e3e78cddbb6ec9dcdf312e2cc557510843</citedby><cites>FETCH-LOGICAL-c6044-fbbcd3d0671b4439ee1915bc64361c4e3e78cddbb6ec9dcdf312e2cc557510843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3321149/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3321149/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22354088$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Greene, Andrew W</creatorcontrib><creatorcontrib>Grenier, Karl</creatorcontrib><creatorcontrib>Aguileta, Miguel A</creatorcontrib><creatorcontrib>Muise, Stephanie</creatorcontrib><creatorcontrib>Farazifard, Rasoul</creatorcontrib><creatorcontrib>Haque, M Emdadul</creatorcontrib><creatorcontrib>McBride, Heidi M</creatorcontrib><creatorcontrib>Park, David S</creatorcontrib><creatorcontrib>Fon, Edward A</creatorcontrib><title>Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>Mutations in phosphatase and tensin homologue‐induced kinase 1 (PINK1) cause recessively inherited Parkinson's disease (PD), a neurodegenerative disorder linked to mitochondrial dysfunction. In healthy mitochondria, PINK1 is rapidly degraded in a process involving both mitochondrial proteases and the proteasome. However, when mitochondrial import is compromised by depolarization, PINK1 accumulates on the mitochondrial surface where it recruits the PD‐linked E3 ubiquitin ligase Parkin from the cytosol, which in turn mediates the autophagic destruction of the dysfunctional organelles. Using an unbiased RNA‐mediated interference (RNAi)‐based screen, we identified four mitochondrial proteases, mitochondrial processing peptidase (MPP), presenilin‐associated rhomboid‐like protease (PARL), m‐AAA and ClpXP, involved in PINK1 degradation. We find that PINK1 turnover is particularly sensitive to even modest reductions in MPP levels. Moreover, PINK1 cleavage by MPP is coupled to import such that reducing MPP activity induces PINK1 accumulation at the mitochondrial surface, leading to Parkin recruitment and mitophagy. These results highlight a new role for MPP in PINK1 import and mitochondrial quality control via the PINK1–Parkin pathway. Dysfunctional mitochondria express high surface levels of the Parkinson's disease‐linked protein PINK1, which in turn recruits Parkin for mitophagy. Fon and colleagues now show that levels of PINK1 are kept low in normal mitochondria through degradation by the mitochondrial processing peptidase (MPP).</description><subject>ATP-Dependent Proteases - metabolism</subject><subject>ATPases Associated with Diverse Cellular Activities</subject><subject>Autophagy - drug effects</subject><subject>Carbonyl Cyanide m-Chlorophenyl Hydrazone - pharmacology</subject><subject>EMBO21</subject><subject>EMBO24</subject><subject>EMBO31</subject><subject>Endopeptidase Clp - metabolism</subject><subject>Gene Knockdown Techniques</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Kinases</subject><subject>Metalloendopeptidases - metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Processing Peptidase</subject><subject>mitophagy</subject><subject>Molecular Weight</subject><subject>Mutation</subject><subject>Parkinson's disease</subject><subject>Peptide Fragments - metabolism</subject><subject>PINK1</subject><subject>Proteases</subject><subject>Proteasome Endopeptidase Complex - metabolism</subject><subject>Protein Kinases - metabolism</subject><subject>Protein Processing, Post-Translational - drug effects</subject><subject>Protein Transport - drug effects</subject><subject>Quality control</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Scientific Report</subject><subject>Scientific Reports</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><issn>1469-221X</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUFv1DAQhS0EoqXlyBVF4koWj-0kzgWJVqVUu90WBIIDkuXYs1uXJA520tJ_T7a7rLYS6skj-Zv3nuYR8groBCiX77CpfJgwCmwC4gnZB5GXKYdCPt3MjMGPPfIixmtKaVYW8jnZY4xngkq5T36eu96bK9_a4HSddMEbjNG1y6TDrndWR0wCLoda9xiTy7P5FHagt4lrOh_6RLc2udThl2tH2oTB9Q22_SF5ttB1xJeb94B8-3jy9fhTOrs4PTv-MEtNToVIF1VlLLc0L6ASgpeIUEJWmVzwHIxAjoU01lZVjqa0xi44MGTGZFmRAZWCH5D3a91uqBq0ZrQOulZdcI0Od8prpx7-tO5KLf2N4pwBiHIUeLMRCP73gLFX134I7ZhZAQWeF4KLYqTSNWWCjzHgYusAVK3KUPdlqFUZClaxXu_G2tL_rj8C2Rq4dTXePa6mTs6Pvqzme-HJei-OK-0Sw27c_yfZJHexxz9bo7EwlRe8yNT3-an6PJd0OpNTNeV_AboUt_s</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Greene, Andrew W</creator><creator>Grenier, Karl</creator><creator>Aguileta, Miguel A</creator><creator>Muise, Stephanie</creator><creator>Farazifard, Rasoul</creator><creator>Haque, M Emdadul</creator><creator>McBride, Heidi M</creator><creator>Park, David S</creator><creator>Fon, Edward A</creator><general>John Wiley &amp; Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>201204</creationdate><title>Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment</title><author>Greene, Andrew W ; Grenier, Karl ; Aguileta, Miguel A ; Muise, Stephanie ; Farazifard, Rasoul ; Haque, M Emdadul ; McBride, Heidi M ; Park, David S ; Fon, Edward A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6044-fbbcd3d0671b4439ee1915bc64361c4e3e78cddbb6ec9dcdf312e2cc557510843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>ATP-Dependent Proteases - metabolism</topic><topic>ATPases Associated with Diverse Cellular Activities</topic><topic>Autophagy - drug effects</topic><topic>Carbonyl Cyanide m-Chlorophenyl Hydrazone - pharmacology</topic><topic>EMBO21</topic><topic>EMBO24</topic><topic>EMBO31</topic><topic>Endopeptidase Clp - metabolism</topic><topic>Gene Knockdown Techniques</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Kinases</topic><topic>Metalloendopeptidases - metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Processing Peptidase</topic><topic>mitophagy</topic><topic>Molecular Weight</topic><topic>Mutation</topic><topic>Parkinson's disease</topic><topic>Peptide Fragments - metabolism</topic><topic>PINK1</topic><topic>Proteases</topic><topic>Proteasome Endopeptidase Complex - metabolism</topic><topic>Protein Kinases - metabolism</topic><topic>Protein Processing, Post-Translational - drug effects</topic><topic>Protein Transport - drug effects</topic><topic>Quality control</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Scientific Report</topic><topic>Scientific Reports</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greene, Andrew W</creatorcontrib><creatorcontrib>Grenier, Karl</creatorcontrib><creatorcontrib>Aguileta, Miguel A</creatorcontrib><creatorcontrib>Muise, Stephanie</creatorcontrib><creatorcontrib>Farazifard, Rasoul</creatorcontrib><creatorcontrib>Haque, M Emdadul</creatorcontrib><creatorcontrib>McBride, Heidi M</creatorcontrib><creatorcontrib>Park, David S</creatorcontrib><creatorcontrib>Fon, Edward A</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greene, Andrew W</au><au>Grenier, Karl</au><au>Aguileta, Miguel A</au><au>Muise, Stephanie</au><au>Farazifard, Rasoul</au><au>Haque, M Emdadul</au><au>McBride, Heidi M</au><au>Park, David S</au><au>Fon, Edward A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2012-04</date><risdate>2012</risdate><volume>13</volume><issue>4</issue><spage>378</spage><epage>385</epage><pages>378-385</pages><issn>1469-221X</issn><eissn>1469-3178</eissn><coden>ERMEAX</coden><abstract>Mutations in phosphatase and tensin homologue‐induced kinase 1 (PINK1) cause recessively inherited Parkinson's disease (PD), a neurodegenerative disorder linked to mitochondrial dysfunction. In healthy mitochondria, PINK1 is rapidly degraded in a process involving both mitochondrial proteases and the proteasome. However, when mitochondrial import is compromised by depolarization, PINK1 accumulates on the mitochondrial surface where it recruits the PD‐linked E3 ubiquitin ligase Parkin from the cytosol, which in turn mediates the autophagic destruction of the dysfunctional organelles. Using an unbiased RNA‐mediated interference (RNAi)‐based screen, we identified four mitochondrial proteases, mitochondrial processing peptidase (MPP), presenilin‐associated rhomboid‐like protease (PARL), m‐AAA and ClpXP, involved in PINK1 degradation. We find that PINK1 turnover is particularly sensitive to even modest reductions in MPP levels. Moreover, PINK1 cleavage by MPP is coupled to import such that reducing MPP activity induces PINK1 accumulation at the mitochondrial surface, leading to Parkin recruitment and mitophagy. These results highlight a new role for MPP in PINK1 import and mitochondrial quality control via the PINK1–Parkin pathway. Dysfunctional mitochondria express high surface levels of the Parkinson's disease‐linked protein PINK1, which in turn recruits Parkin for mitophagy. Fon and colleagues now show that levels of PINK1 are kept low in normal mitochondria through degradation by the mitochondrial processing peptidase (MPP).</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>22354088</pmid><doi>10.1038/embor.2012.14</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1469-221X
ispartof EMBO reports, 2012-04, Vol.13 (4), p.378-385
issn 1469-221X
1469-3178
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3321149
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects ATP-Dependent Proteases - metabolism
ATPases Associated with Diverse Cellular Activities
Autophagy - drug effects
Carbonyl Cyanide m-Chlorophenyl Hydrazone - pharmacology
EMBO21
EMBO24
EMBO31
Endopeptidase Clp - metabolism
Gene Knockdown Techniques
HEK293 Cells
Humans
Kinases
Metalloendopeptidases - metabolism
Mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
Mitochondrial Processing Peptidase
mitophagy
Molecular Weight
Mutation
Parkinson's disease
Peptide Fragments - metabolism
PINK1
Proteases
Proteasome Endopeptidase Complex - metabolism
Protein Kinases - metabolism
Protein Processing, Post-Translational - drug effects
Protein Transport - drug effects
Quality control
RNA, Small Interfering - metabolism
Scientific Report
Scientific Reports
Ubiquitin-Protein Ligases - metabolism
title Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A37%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20processing%20peptidase%20regulates%20PINK1%20processing,%20import%20and%20Parkin%20recruitment&rft.jtitle=EMBO%20reports&rft.au=Greene,%20Andrew%20W&rft.date=2012-04&rft.volume=13&rft.issue=4&rft.spage=378&rft.epage=385&rft.pages=378-385&rft.issn=1469-221X&rft.eissn=1469-3178&rft.coden=ERMEAX&rft_id=info:doi/10.1038/embor.2012.14&rft_dat=%3Cproquest_pubme%3E2661247761%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1013674347&rft_id=info:pmid/22354088&rfr_iscdi=true