Regulation of Glucose Transport by ROCK1 Differs from That of ROCK2 and Is Controlled by Actin Polymerization

A role of Rho-associated coiled-coil-containing protein kinase (ROCK)1 in regulating whole-body glucose homeostasis has been reported. However, cell-autonomous effects of ROCK1 on insulin-dependent glucose transport in adipocytes and muscle cells have not been elucidated. To determine the specific r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Endocrinology (Philadelphia) 2012-04, Vol.153 (4), p.1649-1662
Hauptverfasser: Chun, Kwang-Hoon, Araki, Kazushi, Jee, Yuna, Lee, Dae-Ho, Oh, Byung-Chul, Huang, Hu, Park, Kyong Soo, Lee, Sam W, Zabolotny, Janice M, Kim, Young-Bum
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1662
container_issue 4
container_start_page 1649
container_title Endocrinology (Philadelphia)
container_volume 153
creator Chun, Kwang-Hoon
Araki, Kazushi
Jee, Yuna
Lee, Dae-Ho
Oh, Byung-Chul
Huang, Hu
Park, Kyong Soo
Lee, Sam W
Zabolotny, Janice M
Kim, Young-Bum
description A role of Rho-associated coiled-coil-containing protein kinase (ROCK)1 in regulating whole-body glucose homeostasis has been reported. However, cell-autonomous effects of ROCK1 on insulin-dependent glucose transport in adipocytes and muscle cells have not been elucidated. To determine the specific role of ROCK1 in glucose transport directly, ROCK1 expression in 3T3-L1 adipocytes and L6 myoblasts was biologically modulated. Here, we show that small interfering RNA-mediated ROCK1 depletion decreased insulin-induced glucose transport in adipocytes and myoblasts, whereas adenovirus-mediated ROCK1 expression increased this in a dose-dependent manner, indicating that ROCK1 is permissive for glucose transport. Inhibition of ROCK1 also impaired glucose transporter 4 translocation in 3T3-L1 adipocytes. Importantly, the ED50 of insulin for adipocyte glucose transport was reduced when ROCK1 was expressed, leading to hypersensitivity to insulin. These effects are dependent on actin cytoskeleton remodeling, because inhibitors of actin polymerization significantly decreased ROCK1's effect to promote insulin-stimulated glucose transport. Unlike ROCK2, ROCK1 binding to insulin receptor substrate (IRS)-1 was not detected by immunoprecipitation, although cell fractionation demonstrated both ROCK isoforms localize with IRS-1 in low-density microsomes. Moreover, insulin's ability to increase IRS-1 tyrosine 612 and serine 632/635 phosphorylation was attenuated by ROCK1 suppression. Replacing IRS-1 serine 632/635 with alanine reduced insulin-stimulated phosphatidylinositol 3-kinase activation and glucose transport in 3T3-L1 adipocytes, indicating that phosphorylation of these serine residues of IRS-1, which are substrates of the ROCK2 isoform in vitro, are crucial for maximal stimulation of glucose transport by insulin. Our studies identify ROCK1 as an important positive regulator of insulin action on glucose transport in adipocytes and muscle cells.
doi_str_mv 10.1210/en.2011-1036
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3320261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1210/en.2011-1036</oup_id><sourcerecordid>948913409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-94c5e7742469ac6018806c72e5cf7e5471eecdea63a599ee7f4e6c8ff6dc8f8c3</originalsourceid><addsrcrecordid>eNp1kd1rFDEUxYModq2--SwBkb44NV8zmbwIZau1WKiU9TmkmZs2JZNskxlh_eudcdeuir4khPvLOedyEHpJyTFllLyDeMwIpRUlvHmEFlSJupJUksdoQQjllWRMHqBnpdxNTyEEf4oOGON1TSRdoP4KbsZgBp8iTg6fhdGmAniVTSzrlAd8vcFXl8vPFJ965yAX7HLq8erWDDM_jxg2scPnBS9THHIKAbr514kdfMRfUtj0kP33nxbP0RNnQoEXu_sQff34YbX8VF1cnp0vTy4qW1M5VErYGqQUTDTK2IbQtiWNlQxq6yTUQlIA24FpuKmVApBOQGNb55puOlvLD9H7re56vO6hszAFM0Gvs-9N3uhkvP5zEv2tvknfNOeMsIZOAkc7gZzuRyiD7n2xEIKJkMailWgV5YKoiXz9F3mXxhyn7TSnnDRUETXrvd1SNqdSMriHLJTouUYNUc816rnGCX_1e_4H-FdvE_BmB5hiTXBTXdaXPVdLyali-z3SuP6fZbWz5FsSYpds9hHWGUrZb_PPoD8ADxbCNQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130619091</pqid></control><display><type>article</type><title>Regulation of Glucose Transport by ROCK1 Differs from That of ROCK2 and Is Controlled by Actin Polymerization</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Chun, Kwang-Hoon ; Araki, Kazushi ; Jee, Yuna ; Lee, Dae-Ho ; Oh, Byung-Chul ; Huang, Hu ; Park, Kyong Soo ; Lee, Sam W ; Zabolotny, Janice M ; Kim, Young-Bum</creator><creatorcontrib>Chun, Kwang-Hoon ; Araki, Kazushi ; Jee, Yuna ; Lee, Dae-Ho ; Oh, Byung-Chul ; Huang, Hu ; Park, Kyong Soo ; Lee, Sam W ; Zabolotny, Janice M ; Kim, Young-Bum</creatorcontrib><description>A role of Rho-associated coiled-coil-containing protein kinase (ROCK)1 in regulating whole-body glucose homeostasis has been reported. However, cell-autonomous effects of ROCK1 on insulin-dependent glucose transport in adipocytes and muscle cells have not been elucidated. To determine the specific role of ROCK1 in glucose transport directly, ROCK1 expression in 3T3-L1 adipocytes and L6 myoblasts was biologically modulated. Here, we show that small interfering RNA-mediated ROCK1 depletion decreased insulin-induced glucose transport in adipocytes and myoblasts, whereas adenovirus-mediated ROCK1 expression increased this in a dose-dependent manner, indicating that ROCK1 is permissive for glucose transport. Inhibition of ROCK1 also impaired glucose transporter 4 translocation in 3T3-L1 adipocytes. Importantly, the ED50 of insulin for adipocyte glucose transport was reduced when ROCK1 was expressed, leading to hypersensitivity to insulin. These effects are dependent on actin cytoskeleton remodeling, because inhibitors of actin polymerization significantly decreased ROCK1's effect to promote insulin-stimulated glucose transport. Unlike ROCK2, ROCK1 binding to insulin receptor substrate (IRS)-1 was not detected by immunoprecipitation, although cell fractionation demonstrated both ROCK isoforms localize with IRS-1 in low-density microsomes. Moreover, insulin's ability to increase IRS-1 tyrosine 612 and serine 632/635 phosphorylation was attenuated by ROCK1 suppression. Replacing IRS-1 serine 632/635 with alanine reduced insulin-stimulated phosphatidylinositol 3-kinase activation and glucose transport in 3T3-L1 adipocytes, indicating that phosphorylation of these serine residues of IRS-1, which are substrates of the ROCK2 isoform in vitro, are crucial for maximal stimulation of glucose transport by insulin. Our studies identify ROCK1 as an important positive regulator of insulin action on glucose transport in adipocytes and muscle cells.</description><identifier>ISSN: 0013-7227</identifier><identifier>EISSN: 1945-7170</identifier><identifier>DOI: 10.1210/en.2011-1036</identifier><identifier>PMID: 22355071</identifier><identifier>CODEN: ENDOAO</identifier><language>eng</language><publisher>Chevy Chase, MD: Endocrine Society</publisher><subject>1-Phosphatidylinositol 3-kinase ; 3T3-L1 Cells ; Actin ; Actins - metabolism ; Adipocytes ; Adipocytes - cytology ; Adipocytes - drug effects ; Adipocytes - metabolism ; Alanine ; Animals ; Biological and medical sciences ; Biological Transport - physiology ; Cells, Cultured ; Cytoskeleton ; Diabetes-Insulin-Glucagon-Gastrointestinal ; Fractionation ; Fundamental and applied biological sciences. Psychology ; Glucose ; Glucose - metabolism ; Glucose transport ; Glucose transporter ; Glucose Transporter Type 4 - metabolism ; Homeostasis ; Hypersensitivity ; Immunoprecipitation ; In Vitro Techniques ; Insulin ; Insulin - pharmacology ; Insulin receptor substrate 1 ; Insulin Receptor Substrate Proteins - metabolism ; Isoforms ; Kinases ; Mice ; Microsomes ; Models, Animal ; Muscles ; Myoblasts ; Myoblasts, Skeletal - cytology ; Myoblasts, Skeletal - drug effects ; Myoblasts, Skeletal - metabolism ; Phosphatidylinositol 3-Kinases - metabolism ; Phosphorylation ; Polymerization ; rho-Associated Kinases - metabolism ; RNA transport ; Rocks ; siRNA ; Substrate inhibition ; Translocation ; Tyrosine ; Vertebrates: endocrinology</subject><ispartof>Endocrinology (Philadelphia), 2012-04, Vol.153 (4), p.1649-1662</ispartof><rights>Copyright © 2012 by The Endocrine Society</rights><rights>Copyright © 2012 by The Endocrine Society 2012</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-94c5e7742469ac6018806c72e5cf7e5471eecdea63a599ee7f4e6c8ff6dc8f8c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25773192$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22355071$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chun, Kwang-Hoon</creatorcontrib><creatorcontrib>Araki, Kazushi</creatorcontrib><creatorcontrib>Jee, Yuna</creatorcontrib><creatorcontrib>Lee, Dae-Ho</creatorcontrib><creatorcontrib>Oh, Byung-Chul</creatorcontrib><creatorcontrib>Huang, Hu</creatorcontrib><creatorcontrib>Park, Kyong Soo</creatorcontrib><creatorcontrib>Lee, Sam W</creatorcontrib><creatorcontrib>Zabolotny, Janice M</creatorcontrib><creatorcontrib>Kim, Young-Bum</creatorcontrib><title>Regulation of Glucose Transport by ROCK1 Differs from That of ROCK2 and Is Controlled by Actin Polymerization</title><title>Endocrinology (Philadelphia)</title><addtitle>Endocrinology</addtitle><description>A role of Rho-associated coiled-coil-containing protein kinase (ROCK)1 in regulating whole-body glucose homeostasis has been reported. However, cell-autonomous effects of ROCK1 on insulin-dependent glucose transport in adipocytes and muscle cells have not been elucidated. To determine the specific role of ROCK1 in glucose transport directly, ROCK1 expression in 3T3-L1 adipocytes and L6 myoblasts was biologically modulated. Here, we show that small interfering RNA-mediated ROCK1 depletion decreased insulin-induced glucose transport in adipocytes and myoblasts, whereas adenovirus-mediated ROCK1 expression increased this in a dose-dependent manner, indicating that ROCK1 is permissive for glucose transport. Inhibition of ROCK1 also impaired glucose transporter 4 translocation in 3T3-L1 adipocytes. Importantly, the ED50 of insulin for adipocyte glucose transport was reduced when ROCK1 was expressed, leading to hypersensitivity to insulin. These effects are dependent on actin cytoskeleton remodeling, because inhibitors of actin polymerization significantly decreased ROCK1's effect to promote insulin-stimulated glucose transport. Unlike ROCK2, ROCK1 binding to insulin receptor substrate (IRS)-1 was not detected by immunoprecipitation, although cell fractionation demonstrated both ROCK isoforms localize with IRS-1 in low-density microsomes. Moreover, insulin's ability to increase IRS-1 tyrosine 612 and serine 632/635 phosphorylation was attenuated by ROCK1 suppression. Replacing IRS-1 serine 632/635 with alanine reduced insulin-stimulated phosphatidylinositol 3-kinase activation and glucose transport in 3T3-L1 adipocytes, indicating that phosphorylation of these serine residues of IRS-1, which are substrates of the ROCK2 isoform in vitro, are crucial for maximal stimulation of glucose transport by insulin. Our studies identify ROCK1 as an important positive regulator of insulin action on glucose transport in adipocytes and muscle cells.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>3T3-L1 Cells</subject><subject>Actin</subject><subject>Actins - metabolism</subject><subject>Adipocytes</subject><subject>Adipocytes - cytology</subject><subject>Adipocytes - drug effects</subject><subject>Adipocytes - metabolism</subject><subject>Alanine</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biological Transport - physiology</subject><subject>Cells, Cultured</subject><subject>Cytoskeleton</subject><subject>Diabetes-Insulin-Glucagon-Gastrointestinal</subject><subject>Fractionation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Glucose transport</subject><subject>Glucose transporter</subject><subject>Glucose Transporter Type 4 - metabolism</subject><subject>Homeostasis</subject><subject>Hypersensitivity</subject><subject>Immunoprecipitation</subject><subject>In Vitro Techniques</subject><subject>Insulin</subject><subject>Insulin - pharmacology</subject><subject>Insulin receptor substrate 1</subject><subject>Insulin Receptor Substrate Proteins - metabolism</subject><subject>Isoforms</subject><subject>Kinases</subject><subject>Mice</subject><subject>Microsomes</subject><subject>Models, Animal</subject><subject>Muscles</subject><subject>Myoblasts</subject><subject>Myoblasts, Skeletal - cytology</subject><subject>Myoblasts, Skeletal - drug effects</subject><subject>Myoblasts, Skeletal - metabolism</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Phosphorylation</subject><subject>Polymerization</subject><subject>rho-Associated Kinases - metabolism</subject><subject>RNA transport</subject><subject>Rocks</subject><subject>siRNA</subject><subject>Substrate inhibition</subject><subject>Translocation</subject><subject>Tyrosine</subject><subject>Vertebrates: endocrinology</subject><issn>0013-7227</issn><issn>1945-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kd1rFDEUxYModq2--SwBkb44NV8zmbwIZau1WKiU9TmkmZs2JZNskxlh_eudcdeuir4khPvLOedyEHpJyTFllLyDeMwIpRUlvHmEFlSJupJUksdoQQjllWRMHqBnpdxNTyEEf4oOGON1TSRdoP4KbsZgBp8iTg6fhdGmAniVTSzrlAd8vcFXl8vPFJ965yAX7HLq8erWDDM_jxg2scPnBS9THHIKAbr514kdfMRfUtj0kP33nxbP0RNnQoEXu_sQff34YbX8VF1cnp0vTy4qW1M5VErYGqQUTDTK2IbQtiWNlQxq6yTUQlIA24FpuKmVApBOQGNb55puOlvLD9H7re56vO6hszAFM0Gvs-9N3uhkvP5zEv2tvknfNOeMsIZOAkc7gZzuRyiD7n2xEIKJkMailWgV5YKoiXz9F3mXxhyn7TSnnDRUETXrvd1SNqdSMriHLJTouUYNUc816rnGCX_1e_4H-FdvE_BmB5hiTXBTXdaXPVdLyali-z3SuP6fZbWz5FsSYpds9hHWGUrZb_PPoD8ADxbCNQ</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Chun, Kwang-Hoon</creator><creator>Araki, Kazushi</creator><creator>Jee, Yuna</creator><creator>Lee, Dae-Ho</creator><creator>Oh, Byung-Chul</creator><creator>Huang, Hu</creator><creator>Park, Kyong Soo</creator><creator>Lee, Sam W</creator><creator>Zabolotny, Janice M</creator><creator>Kim, Young-Bum</creator><general>Endocrine Society</general><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120401</creationdate><title>Regulation of Glucose Transport by ROCK1 Differs from That of ROCK2 and Is Controlled by Actin Polymerization</title><author>Chun, Kwang-Hoon ; Araki, Kazushi ; Jee, Yuna ; Lee, Dae-Ho ; Oh, Byung-Chul ; Huang, Hu ; Park, Kyong Soo ; Lee, Sam W ; Zabolotny, Janice M ; Kim, Young-Bum</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-94c5e7742469ac6018806c72e5cf7e5471eecdea63a599ee7f4e6c8ff6dc8f8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>3T3-L1 Cells</topic><topic>Actin</topic><topic>Actins - metabolism</topic><topic>Adipocytes</topic><topic>Adipocytes - cytology</topic><topic>Adipocytes - drug effects</topic><topic>Adipocytes - metabolism</topic><topic>Alanine</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biological Transport - physiology</topic><topic>Cells, Cultured</topic><topic>Cytoskeleton</topic><topic>Diabetes-Insulin-Glucagon-Gastrointestinal</topic><topic>Fractionation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Glucose transport</topic><topic>Glucose transporter</topic><topic>Glucose Transporter Type 4 - metabolism</topic><topic>Homeostasis</topic><topic>Hypersensitivity</topic><topic>Immunoprecipitation</topic><topic>In Vitro Techniques</topic><topic>Insulin</topic><topic>Insulin - pharmacology</topic><topic>Insulin receptor substrate 1</topic><topic>Insulin Receptor Substrate Proteins - metabolism</topic><topic>Isoforms</topic><topic>Kinases</topic><topic>Mice</topic><topic>Microsomes</topic><topic>Models, Animal</topic><topic>Muscles</topic><topic>Myoblasts</topic><topic>Myoblasts, Skeletal - cytology</topic><topic>Myoblasts, Skeletal - drug effects</topic><topic>Myoblasts, Skeletal - metabolism</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Phosphorylation</topic><topic>Polymerization</topic><topic>rho-Associated Kinases - metabolism</topic><topic>RNA transport</topic><topic>Rocks</topic><topic>siRNA</topic><topic>Substrate inhibition</topic><topic>Translocation</topic><topic>Tyrosine</topic><topic>Vertebrates: endocrinology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chun, Kwang-Hoon</creatorcontrib><creatorcontrib>Araki, Kazushi</creatorcontrib><creatorcontrib>Jee, Yuna</creatorcontrib><creatorcontrib>Lee, Dae-Ho</creatorcontrib><creatorcontrib>Oh, Byung-Chul</creatorcontrib><creatorcontrib>Huang, Hu</creatorcontrib><creatorcontrib>Park, Kyong Soo</creatorcontrib><creatorcontrib>Lee, Sam W</creatorcontrib><creatorcontrib>Zabolotny, Janice M</creatorcontrib><creatorcontrib>Kim, Young-Bum</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Endocrinology (Philadelphia)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chun, Kwang-Hoon</au><au>Araki, Kazushi</au><au>Jee, Yuna</au><au>Lee, Dae-Ho</au><au>Oh, Byung-Chul</au><au>Huang, Hu</au><au>Park, Kyong Soo</au><au>Lee, Sam W</au><au>Zabolotny, Janice M</au><au>Kim, Young-Bum</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of Glucose Transport by ROCK1 Differs from That of ROCK2 and Is Controlled by Actin Polymerization</atitle><jtitle>Endocrinology (Philadelphia)</jtitle><addtitle>Endocrinology</addtitle><date>2012-04-01</date><risdate>2012</risdate><volume>153</volume><issue>4</issue><spage>1649</spage><epage>1662</epage><pages>1649-1662</pages><issn>0013-7227</issn><eissn>1945-7170</eissn><coden>ENDOAO</coden><abstract>A role of Rho-associated coiled-coil-containing protein kinase (ROCK)1 in regulating whole-body glucose homeostasis has been reported. However, cell-autonomous effects of ROCK1 on insulin-dependent glucose transport in adipocytes and muscle cells have not been elucidated. To determine the specific role of ROCK1 in glucose transport directly, ROCK1 expression in 3T3-L1 adipocytes and L6 myoblasts was biologically modulated. Here, we show that small interfering RNA-mediated ROCK1 depletion decreased insulin-induced glucose transport in adipocytes and myoblasts, whereas adenovirus-mediated ROCK1 expression increased this in a dose-dependent manner, indicating that ROCK1 is permissive for glucose transport. Inhibition of ROCK1 also impaired glucose transporter 4 translocation in 3T3-L1 adipocytes. Importantly, the ED50 of insulin for adipocyte glucose transport was reduced when ROCK1 was expressed, leading to hypersensitivity to insulin. These effects are dependent on actin cytoskeleton remodeling, because inhibitors of actin polymerization significantly decreased ROCK1's effect to promote insulin-stimulated glucose transport. Unlike ROCK2, ROCK1 binding to insulin receptor substrate (IRS)-1 was not detected by immunoprecipitation, although cell fractionation demonstrated both ROCK isoforms localize with IRS-1 in low-density microsomes. Moreover, insulin's ability to increase IRS-1 tyrosine 612 and serine 632/635 phosphorylation was attenuated by ROCK1 suppression. Replacing IRS-1 serine 632/635 with alanine reduced insulin-stimulated phosphatidylinositol 3-kinase activation and glucose transport in 3T3-L1 adipocytes, indicating that phosphorylation of these serine residues of IRS-1, which are substrates of the ROCK2 isoform in vitro, are crucial for maximal stimulation of glucose transport by insulin. Our studies identify ROCK1 as an important positive regulator of insulin action on glucose transport in adipocytes and muscle cells.</abstract><cop>Chevy Chase, MD</cop><pub>Endocrine Society</pub><pmid>22355071</pmid><doi>10.1210/en.2011-1036</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-7227
ispartof Endocrinology (Philadelphia), 2012-04, Vol.153 (4), p.1649-1662
issn 0013-7227
1945-7170
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3320261
source MEDLINE; Journals@Ovid Complete; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects 1-Phosphatidylinositol 3-kinase
3T3-L1 Cells
Actin
Actins - metabolism
Adipocytes
Adipocytes - cytology
Adipocytes - drug effects
Adipocytes - metabolism
Alanine
Animals
Biological and medical sciences
Biological Transport - physiology
Cells, Cultured
Cytoskeleton
Diabetes-Insulin-Glucagon-Gastrointestinal
Fractionation
Fundamental and applied biological sciences. Psychology
Glucose
Glucose - metabolism
Glucose transport
Glucose transporter
Glucose Transporter Type 4 - metabolism
Homeostasis
Hypersensitivity
Immunoprecipitation
In Vitro Techniques
Insulin
Insulin - pharmacology
Insulin receptor substrate 1
Insulin Receptor Substrate Proteins - metabolism
Isoforms
Kinases
Mice
Microsomes
Models, Animal
Muscles
Myoblasts
Myoblasts, Skeletal - cytology
Myoblasts, Skeletal - drug effects
Myoblasts, Skeletal - metabolism
Phosphatidylinositol 3-Kinases - metabolism
Phosphorylation
Polymerization
rho-Associated Kinases - metabolism
RNA transport
Rocks
siRNA
Substrate inhibition
Translocation
Tyrosine
Vertebrates: endocrinology
title Regulation of Glucose Transport by ROCK1 Differs from That of ROCK2 and Is Controlled by Actin Polymerization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T16%3A43%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20Glucose%20Transport%20by%20ROCK1%20Differs%20from%20That%20of%20ROCK2%20and%20Is%20Controlled%20by%20Actin%20Polymerization&rft.jtitle=Endocrinology%20(Philadelphia)&rft.au=Chun,%20Kwang-Hoon&rft.date=2012-04-01&rft.volume=153&rft.issue=4&rft.spage=1649&rft.epage=1662&rft.pages=1649-1662&rft.issn=0013-7227&rft.eissn=1945-7170&rft.coden=ENDOAO&rft_id=info:doi/10.1210/en.2011-1036&rft_dat=%3Cproquest_pubme%3E948913409%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130619091&rft_id=info:pmid/22355071&rft_oup_id=10.1210/en.2011-1036&rfr_iscdi=true