Strigolactones Suppress Adventitious Rooting in Arabidopsis and Pea

Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2012-04, Vol.158 (4), p.1976-1987
Hauptverfasser: Rasmussen, Amanda, Mason, Michael Glenn, De Cuyper, Carolien, Brewer, Philip B., Herold, Silvia, Agusti, Javier, Geelen, Danny, Greb, Thomas, Goormachtig, Sofie, Beeckman, Tom, Beveridge, Christine Anne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1987
container_issue 4
container_start_page 1976
container_title Plant physiology (Bethesda)
container_volume 158
creator Rasmussen, Amanda
Mason, Michael Glenn
De Cuyper, Carolien
Brewer, Philip B.
Herold, Silvia
Agusti, Javier
Geelen, Danny
Greb, Thomas
Goormachtig, Sofie
Beeckman, Tom
Beveridge, Christine Anne
description Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Visum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation.
doi_str_mv 10.1104/pp.111.187104
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3320200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41496334</jstor_id><sourcerecordid>41496334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-7af32b9e8a716e961361a534852ce68af2322d8fcf60ff4c3a9d22c50b07b80f3</originalsourceid><addsrcrecordid>eNp9kc1rGzEQxUVpSVw3xx4T9hLayyb6Wkl7CRjTNoVAStKcxaxWchXWK1VaG_LfV8WOm16iy9MwP4Y38xD6SPAFIZhfxliUXBAlS_UGzUjDaE0brt6iGcblj5Vqj9H7nB8xxoQRfoSOKWWUSSlmaHk_Jb8KA5gpjDZX95sYk825WvRbO05-8mGTq7sQJj-uKj9WiwSd70PMPlcw9tUPCx_QOwdDtid7naOHr19-Lq_rm9tv35eLm9o0TE61BMdo11oFkgjbCsIEgYZx1VBjhQJXTNFeOeMEdo4bBm1PqWlwh2WnsGNzdLWbGzfd2vam-Esw6Jj8GtKTDuD1_53R_9KrsNWMUUzLMebo035ACr83Nk967bOxwwCjLWvqVqhyRFbeHH1-lSS83JJKolRB6x1qUsg5WXcwRLD-G5GOsSjRu4gKf_ZyiwP9nEkBzvcAZAODSzAan_9xjWyxaGThTnfcY55COvQ54a1gjLM_5aKjPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1400127188</pqid></control><display><type>article</type><title>Strigolactones Suppress Adventitious Rooting in Arabidopsis and Pea</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Rasmussen, Amanda ; Mason, Michael Glenn ; De Cuyper, Carolien ; Brewer, Philip B. ; Herold, Silvia ; Agusti, Javier ; Geelen, Danny ; Greb, Thomas ; Goormachtig, Sofie ; Beeckman, Tom ; Beveridge, Christine Anne</creator><creatorcontrib>Rasmussen, Amanda ; Mason, Michael Glenn ; De Cuyper, Carolien ; Brewer, Philip B. ; Herold, Silvia ; Agusti, Javier ; Geelen, Danny ; Greb, Thomas ; Goormachtig, Sofie ; Beeckman, Tom ; Beveridge, Christine Anne</creatorcontrib><description>Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Visum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.111.187104</identifier><identifier>PMID: 22323776</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Adventitious roots ; Arabidopsis ; Arabidopsis - drug effects ; Arabidopsis - genetics ; Arabidopsis - growth &amp; development ; Arabidopsis - radiation effects ; Arabidopsis Proteins ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Auxins ; Biological and medical sciences ; Branching ; cell division ; Cytokinins ; Cytokinins - pharmacology ; DEVELOPMENT AND HORMONE ACTION ; drug effects ; Fundamental and applied biological sciences. Psychology ; genetics ; growth &amp; development ; Hypocotyl ; Hypocotyl - drug effects ; Hypocotyl - growth &amp; development ; Hypocotyl - radiation effects ; Hypocotyls ; Indoleacetic Acids ; Indoleacetic Acids - pharmacology ; Lactones ; Lactones - pharmacology ; leaves ; Light ; metabolism ; Models, Biological ; mutants ; Mutation ; Mutation - genetics ; Peas ; pharmacology ; Pisum sativum ; Pisum sativum - drug effects ; Pisum sativum - genetics ; Pisum sativum - growth &amp; development ; Pisum sativum - radiation effects ; Plant cuttings ; plant hormones ; Plant physiology and development ; Plant Roots ; Plant Roots - drug effects ; Plant Roots - genetics ; Plant Roots - growth &amp; development ; Plant Roots - radiation effects ; Plants ; radiation effects ; root primordia ; Rooting ; stems ; Xylem ; Xylem - drug effects ; Xylem - metabolism ; Xylem - radiation effects</subject><ispartof>Plant physiology (Bethesda), 2012-04, Vol.158 (4), p.1976-1987</ispartof><rights>2012 American Society of Plant Biologists</rights><rights>2015 INIST-CNRS</rights><rights>2012 American Society of Plant Biologists. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-7af32b9e8a716e961361a534852ce68af2322d8fcf60ff4c3a9d22c50b07b80f3</citedby><cites>FETCH-LOGICAL-c537t-7af32b9e8a716e961361a534852ce68af2322d8fcf60ff4c3a9d22c50b07b80f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41496334$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41496334$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25790657$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22323776$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rasmussen, Amanda</creatorcontrib><creatorcontrib>Mason, Michael Glenn</creatorcontrib><creatorcontrib>De Cuyper, Carolien</creatorcontrib><creatorcontrib>Brewer, Philip B.</creatorcontrib><creatorcontrib>Herold, Silvia</creatorcontrib><creatorcontrib>Agusti, Javier</creatorcontrib><creatorcontrib>Geelen, Danny</creatorcontrib><creatorcontrib>Greb, Thomas</creatorcontrib><creatorcontrib>Goormachtig, Sofie</creatorcontrib><creatorcontrib>Beeckman, Tom</creatorcontrib><creatorcontrib>Beveridge, Christine Anne</creatorcontrib><title>Strigolactones Suppress Adventitious Rooting in Arabidopsis and Pea</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Visum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation.</description><subject>Adventitious roots</subject><subject>Arabidopsis</subject><subject>Arabidopsis - drug effects</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Arabidopsis - radiation effects</subject><subject>Arabidopsis Proteins</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Auxins</subject><subject>Biological and medical sciences</subject><subject>Branching</subject><subject>cell division</subject><subject>Cytokinins</subject><subject>Cytokinins - pharmacology</subject><subject>DEVELOPMENT AND HORMONE ACTION</subject><subject>drug effects</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>genetics</subject><subject>growth &amp; development</subject><subject>Hypocotyl</subject><subject>Hypocotyl - drug effects</subject><subject>Hypocotyl - growth &amp; development</subject><subject>Hypocotyl - radiation effects</subject><subject>Hypocotyls</subject><subject>Indoleacetic Acids</subject><subject>Indoleacetic Acids - pharmacology</subject><subject>Lactones</subject><subject>Lactones - pharmacology</subject><subject>leaves</subject><subject>Light</subject><subject>metabolism</subject><subject>Models, Biological</subject><subject>mutants</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Peas</subject><subject>pharmacology</subject><subject>Pisum sativum</subject><subject>Pisum sativum - drug effects</subject><subject>Pisum sativum - genetics</subject><subject>Pisum sativum - growth &amp; development</subject><subject>Pisum sativum - radiation effects</subject><subject>Plant cuttings</subject><subject>plant hormones</subject><subject>Plant physiology and development</subject><subject>Plant Roots</subject><subject>Plant Roots - drug effects</subject><subject>Plant Roots - genetics</subject><subject>Plant Roots - growth &amp; development</subject><subject>Plant Roots - radiation effects</subject><subject>Plants</subject><subject>radiation effects</subject><subject>root primordia</subject><subject>Rooting</subject><subject>stems</subject><subject>Xylem</subject><subject>Xylem - drug effects</subject><subject>Xylem - metabolism</subject><subject>Xylem - radiation effects</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1rGzEQxUVpSVw3xx4T9hLayyb6Wkl7CRjTNoVAStKcxaxWchXWK1VaG_LfV8WOm16iy9MwP4Y38xD6SPAFIZhfxliUXBAlS_UGzUjDaE0brt6iGcblj5Vqj9H7nB8xxoQRfoSOKWWUSSlmaHk_Jb8KA5gpjDZX95sYk825WvRbO05-8mGTq7sQJj-uKj9WiwSd70PMPlcw9tUPCx_QOwdDtid7naOHr19-Lq_rm9tv35eLm9o0TE61BMdo11oFkgjbCsIEgYZx1VBjhQJXTNFeOeMEdo4bBm1PqWlwh2WnsGNzdLWbGzfd2vam-Esw6Jj8GtKTDuD1_53R_9KrsNWMUUzLMebo035ACr83Nk967bOxwwCjLWvqVqhyRFbeHH1-lSS83JJKolRB6x1qUsg5WXcwRLD-G5GOsSjRu4gKf_ZyiwP9nEkBzvcAZAODSzAan_9xjWyxaGThTnfcY55COvQ54a1gjLM_5aKjPw</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Rasmussen, Amanda</creator><creator>Mason, Michael Glenn</creator><creator>De Cuyper, Carolien</creator><creator>Brewer, Philip B.</creator><creator>Herold, Silvia</creator><creator>Agusti, Javier</creator><creator>Geelen, Danny</creator><creator>Greb, Thomas</creator><creator>Goormachtig, Sofie</creator><creator>Beeckman, Tom</creator><creator>Beveridge, Christine Anne</creator><general>American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120401</creationdate><title>Strigolactones Suppress Adventitious Rooting in Arabidopsis and Pea</title><author>Rasmussen, Amanda ; Mason, Michael Glenn ; De Cuyper, Carolien ; Brewer, Philip B. ; Herold, Silvia ; Agusti, Javier ; Geelen, Danny ; Greb, Thomas ; Goormachtig, Sofie ; Beeckman, Tom ; Beveridge, Christine Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-7af32b9e8a716e961361a534852ce68af2322d8fcf60ff4c3a9d22c50b07b80f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adventitious roots</topic><topic>Arabidopsis</topic><topic>Arabidopsis - drug effects</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Arabidopsis - radiation effects</topic><topic>Arabidopsis Proteins</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Auxins</topic><topic>Biological and medical sciences</topic><topic>Branching</topic><topic>cell division</topic><topic>Cytokinins</topic><topic>Cytokinins - pharmacology</topic><topic>DEVELOPMENT AND HORMONE ACTION</topic><topic>drug effects</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>genetics</topic><topic>growth &amp; development</topic><topic>Hypocotyl</topic><topic>Hypocotyl - drug effects</topic><topic>Hypocotyl - growth &amp; development</topic><topic>Hypocotyl - radiation effects</topic><topic>Hypocotyls</topic><topic>Indoleacetic Acids</topic><topic>Indoleacetic Acids - pharmacology</topic><topic>Lactones</topic><topic>Lactones - pharmacology</topic><topic>leaves</topic><topic>Light</topic><topic>metabolism</topic><topic>Models, Biological</topic><topic>mutants</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Peas</topic><topic>pharmacology</topic><topic>Pisum sativum</topic><topic>Pisum sativum - drug effects</topic><topic>Pisum sativum - genetics</topic><topic>Pisum sativum - growth &amp; development</topic><topic>Pisum sativum - radiation effects</topic><topic>Plant cuttings</topic><topic>plant hormones</topic><topic>Plant physiology and development</topic><topic>Plant Roots</topic><topic>Plant Roots - drug effects</topic><topic>Plant Roots - genetics</topic><topic>Plant Roots - growth &amp; development</topic><topic>Plant Roots - radiation effects</topic><topic>Plants</topic><topic>radiation effects</topic><topic>root primordia</topic><topic>Rooting</topic><topic>stems</topic><topic>Xylem</topic><topic>Xylem - drug effects</topic><topic>Xylem - metabolism</topic><topic>Xylem - radiation effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rasmussen, Amanda</creatorcontrib><creatorcontrib>Mason, Michael Glenn</creatorcontrib><creatorcontrib>De Cuyper, Carolien</creatorcontrib><creatorcontrib>Brewer, Philip B.</creatorcontrib><creatorcontrib>Herold, Silvia</creatorcontrib><creatorcontrib>Agusti, Javier</creatorcontrib><creatorcontrib>Geelen, Danny</creatorcontrib><creatorcontrib>Greb, Thomas</creatorcontrib><creatorcontrib>Goormachtig, Sofie</creatorcontrib><creatorcontrib>Beeckman, Tom</creatorcontrib><creatorcontrib>Beveridge, Christine Anne</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rasmussen, Amanda</au><au>Mason, Michael Glenn</au><au>De Cuyper, Carolien</au><au>Brewer, Philip B.</au><au>Herold, Silvia</au><au>Agusti, Javier</au><au>Geelen, Danny</au><au>Greb, Thomas</au><au>Goormachtig, Sofie</au><au>Beeckman, Tom</au><au>Beveridge, Christine Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strigolactones Suppress Adventitious Rooting in Arabidopsis and Pea</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2012-04-01</date><risdate>2012</risdate><volume>158</volume><issue>4</issue><spage>1976</spage><epage>1987</epage><pages>1976-1987</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Visum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>22323776</pmid><doi>10.1104/pp.111.187104</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2012-04, Vol.158 (4), p.1976-1987
issn 0032-0889
1532-2548
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3320200
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adventitious roots
Arabidopsis
Arabidopsis - drug effects
Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis - radiation effects
Arabidopsis Proteins
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Auxins
Biological and medical sciences
Branching
cell division
Cytokinins
Cytokinins - pharmacology
DEVELOPMENT AND HORMONE ACTION
drug effects
Fundamental and applied biological sciences. Psychology
genetics
growth & development
Hypocotyl
Hypocotyl - drug effects
Hypocotyl - growth & development
Hypocotyl - radiation effects
Hypocotyls
Indoleacetic Acids
Indoleacetic Acids - pharmacology
Lactones
Lactones - pharmacology
leaves
Light
metabolism
Models, Biological
mutants
Mutation
Mutation - genetics
Peas
pharmacology
Pisum sativum
Pisum sativum - drug effects
Pisum sativum - genetics
Pisum sativum - growth & development
Pisum sativum - radiation effects
Plant cuttings
plant hormones
Plant physiology and development
Plant Roots
Plant Roots - drug effects
Plant Roots - genetics
Plant Roots - growth & development
Plant Roots - radiation effects
Plants
radiation effects
root primordia
Rooting
stems
Xylem
Xylem - drug effects
Xylem - metabolism
Xylem - radiation effects
title Strigolactones Suppress Adventitious Rooting in Arabidopsis and Pea
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A37%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strigolactones%20Suppress%20Adventitious%20Rooting%20in%20Arabidopsis%20and%20Pea&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Rasmussen,%20Amanda&rft.date=2012-04-01&rft.volume=158&rft.issue=4&rft.spage=1976&rft.epage=1987&rft.pages=1976-1987&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.111.187104&rft_dat=%3Cjstor_pubme%3E41496334%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1400127188&rft_id=info:pmid/22323776&rft_jstor_id=41496334&rfr_iscdi=true