Strigolactones Suppress Adventitious Rooting in Arabidopsis and Pea
Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2012-04, Vol.158 (4), p.1976-1987 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1987 |
---|---|
container_issue | 4 |
container_start_page | 1976 |
container_title | Plant physiology (Bethesda) |
container_volume | 158 |
creator | Rasmussen, Amanda Mason, Michael Glenn De Cuyper, Carolien Brewer, Philip B. Herold, Silvia Agusti, Javier Geelen, Danny Greb, Thomas Goormachtig, Sofie Beeckman, Tom Beveridge, Christine Anne |
description | Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Visum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation. |
doi_str_mv | 10.1104/pp.111.187104 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3320200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41496334</jstor_id><sourcerecordid>41496334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-7af32b9e8a716e961361a534852ce68af2322d8fcf60ff4c3a9d22c50b07b80f3</originalsourceid><addsrcrecordid>eNp9kc1rGzEQxUVpSVw3xx4T9hLayyb6Wkl7CRjTNoVAStKcxaxWchXWK1VaG_LfV8WOm16iy9MwP4Y38xD6SPAFIZhfxliUXBAlS_UGzUjDaE0brt6iGcblj5Vqj9H7nB8xxoQRfoSOKWWUSSlmaHk_Jb8KA5gpjDZX95sYk825WvRbO05-8mGTq7sQJj-uKj9WiwSd70PMPlcw9tUPCx_QOwdDtid7naOHr19-Lq_rm9tv35eLm9o0TE61BMdo11oFkgjbCsIEgYZx1VBjhQJXTNFeOeMEdo4bBm1PqWlwh2WnsGNzdLWbGzfd2vam-Esw6Jj8GtKTDuD1_53R_9KrsNWMUUzLMebo035ACr83Nk967bOxwwCjLWvqVqhyRFbeHH1-lSS83JJKolRB6x1qUsg5WXcwRLD-G5GOsSjRu4gKf_ZyiwP9nEkBzvcAZAODSzAan_9xjWyxaGThTnfcY55COvQ54a1gjLM_5aKjPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1400127188</pqid></control><display><type>article</type><title>Strigolactones Suppress Adventitious Rooting in Arabidopsis and Pea</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Rasmussen, Amanda ; Mason, Michael Glenn ; De Cuyper, Carolien ; Brewer, Philip B. ; Herold, Silvia ; Agusti, Javier ; Geelen, Danny ; Greb, Thomas ; Goormachtig, Sofie ; Beeckman, Tom ; Beveridge, Christine Anne</creator><creatorcontrib>Rasmussen, Amanda ; Mason, Michael Glenn ; De Cuyper, Carolien ; Brewer, Philip B. ; Herold, Silvia ; Agusti, Javier ; Geelen, Danny ; Greb, Thomas ; Goormachtig, Sofie ; Beeckman, Tom ; Beveridge, Christine Anne</creatorcontrib><description>Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Visum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.111.187104</identifier><identifier>PMID: 22323776</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Adventitious roots ; Arabidopsis ; Arabidopsis - drug effects ; Arabidopsis - genetics ; Arabidopsis - growth & development ; Arabidopsis - radiation effects ; Arabidopsis Proteins ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Auxins ; Biological and medical sciences ; Branching ; cell division ; Cytokinins ; Cytokinins - pharmacology ; DEVELOPMENT AND HORMONE ACTION ; drug effects ; Fundamental and applied biological sciences. Psychology ; genetics ; growth & development ; Hypocotyl ; Hypocotyl - drug effects ; Hypocotyl - growth & development ; Hypocotyl - radiation effects ; Hypocotyls ; Indoleacetic Acids ; Indoleacetic Acids - pharmacology ; Lactones ; Lactones - pharmacology ; leaves ; Light ; metabolism ; Models, Biological ; mutants ; Mutation ; Mutation - genetics ; Peas ; pharmacology ; Pisum sativum ; Pisum sativum - drug effects ; Pisum sativum - genetics ; Pisum sativum - growth & development ; Pisum sativum - radiation effects ; Plant cuttings ; plant hormones ; Plant physiology and development ; Plant Roots ; Plant Roots - drug effects ; Plant Roots - genetics ; Plant Roots - growth & development ; Plant Roots - radiation effects ; Plants ; radiation effects ; root primordia ; Rooting ; stems ; Xylem ; Xylem - drug effects ; Xylem - metabolism ; Xylem - radiation effects</subject><ispartof>Plant physiology (Bethesda), 2012-04, Vol.158 (4), p.1976-1987</ispartof><rights>2012 American Society of Plant Biologists</rights><rights>2015 INIST-CNRS</rights><rights>2012 American Society of Plant Biologists. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-7af32b9e8a716e961361a534852ce68af2322d8fcf60ff4c3a9d22c50b07b80f3</citedby><cites>FETCH-LOGICAL-c537t-7af32b9e8a716e961361a534852ce68af2322d8fcf60ff4c3a9d22c50b07b80f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41496334$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41496334$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25790657$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22323776$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rasmussen, Amanda</creatorcontrib><creatorcontrib>Mason, Michael Glenn</creatorcontrib><creatorcontrib>De Cuyper, Carolien</creatorcontrib><creatorcontrib>Brewer, Philip B.</creatorcontrib><creatorcontrib>Herold, Silvia</creatorcontrib><creatorcontrib>Agusti, Javier</creatorcontrib><creatorcontrib>Geelen, Danny</creatorcontrib><creatorcontrib>Greb, Thomas</creatorcontrib><creatorcontrib>Goormachtig, Sofie</creatorcontrib><creatorcontrib>Beeckman, Tom</creatorcontrib><creatorcontrib>Beveridge, Christine Anne</creatorcontrib><title>Strigolactones Suppress Adventitious Rooting in Arabidopsis and Pea</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Visum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation.</description><subject>Adventitious roots</subject><subject>Arabidopsis</subject><subject>Arabidopsis - drug effects</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth & development</subject><subject>Arabidopsis - radiation effects</subject><subject>Arabidopsis Proteins</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Auxins</subject><subject>Biological and medical sciences</subject><subject>Branching</subject><subject>cell division</subject><subject>Cytokinins</subject><subject>Cytokinins - pharmacology</subject><subject>DEVELOPMENT AND HORMONE ACTION</subject><subject>drug effects</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>genetics</subject><subject>growth & development</subject><subject>Hypocotyl</subject><subject>Hypocotyl - drug effects</subject><subject>Hypocotyl - growth & development</subject><subject>Hypocotyl - radiation effects</subject><subject>Hypocotyls</subject><subject>Indoleacetic Acids</subject><subject>Indoleacetic Acids - pharmacology</subject><subject>Lactones</subject><subject>Lactones - pharmacology</subject><subject>leaves</subject><subject>Light</subject><subject>metabolism</subject><subject>Models, Biological</subject><subject>mutants</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Peas</subject><subject>pharmacology</subject><subject>Pisum sativum</subject><subject>Pisum sativum - drug effects</subject><subject>Pisum sativum - genetics</subject><subject>Pisum sativum - growth & development</subject><subject>Pisum sativum - radiation effects</subject><subject>Plant cuttings</subject><subject>plant hormones</subject><subject>Plant physiology and development</subject><subject>Plant Roots</subject><subject>Plant Roots - drug effects</subject><subject>Plant Roots - genetics</subject><subject>Plant Roots - growth & development</subject><subject>Plant Roots - radiation effects</subject><subject>Plants</subject><subject>radiation effects</subject><subject>root primordia</subject><subject>Rooting</subject><subject>stems</subject><subject>Xylem</subject><subject>Xylem - drug effects</subject><subject>Xylem - metabolism</subject><subject>Xylem - radiation effects</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1rGzEQxUVpSVw3xx4T9hLayyb6Wkl7CRjTNoVAStKcxaxWchXWK1VaG_LfV8WOm16iy9MwP4Y38xD6SPAFIZhfxliUXBAlS_UGzUjDaE0brt6iGcblj5Vqj9H7nB8xxoQRfoSOKWWUSSlmaHk_Jb8KA5gpjDZX95sYk825WvRbO05-8mGTq7sQJj-uKj9WiwSd70PMPlcw9tUPCx_QOwdDtid7naOHr19-Lq_rm9tv35eLm9o0TE61BMdo11oFkgjbCsIEgYZx1VBjhQJXTNFeOeMEdo4bBm1PqWlwh2WnsGNzdLWbGzfd2vam-Esw6Jj8GtKTDuD1_53R_9KrsNWMUUzLMebo035ACr83Nk967bOxwwCjLWvqVqhyRFbeHH1-lSS83JJKolRB6x1qUsg5WXcwRLD-G5GOsSjRu4gKf_ZyiwP9nEkBzvcAZAODSzAan_9xjWyxaGThTnfcY55COvQ54a1gjLM_5aKjPw</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Rasmussen, Amanda</creator><creator>Mason, Michael Glenn</creator><creator>De Cuyper, Carolien</creator><creator>Brewer, Philip B.</creator><creator>Herold, Silvia</creator><creator>Agusti, Javier</creator><creator>Geelen, Danny</creator><creator>Greb, Thomas</creator><creator>Goormachtig, Sofie</creator><creator>Beeckman, Tom</creator><creator>Beveridge, Christine Anne</creator><general>American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120401</creationdate><title>Strigolactones Suppress Adventitious Rooting in Arabidopsis and Pea</title><author>Rasmussen, Amanda ; Mason, Michael Glenn ; De Cuyper, Carolien ; Brewer, Philip B. ; Herold, Silvia ; Agusti, Javier ; Geelen, Danny ; Greb, Thomas ; Goormachtig, Sofie ; Beeckman, Tom ; Beveridge, Christine Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-7af32b9e8a716e961361a534852ce68af2322d8fcf60ff4c3a9d22c50b07b80f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adventitious roots</topic><topic>Arabidopsis</topic><topic>Arabidopsis - drug effects</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth & development</topic><topic>Arabidopsis - radiation effects</topic><topic>Arabidopsis Proteins</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Auxins</topic><topic>Biological and medical sciences</topic><topic>Branching</topic><topic>cell division</topic><topic>Cytokinins</topic><topic>Cytokinins - pharmacology</topic><topic>DEVELOPMENT AND HORMONE ACTION</topic><topic>drug effects</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>genetics</topic><topic>growth & development</topic><topic>Hypocotyl</topic><topic>Hypocotyl - drug effects</topic><topic>Hypocotyl - growth & development</topic><topic>Hypocotyl - radiation effects</topic><topic>Hypocotyls</topic><topic>Indoleacetic Acids</topic><topic>Indoleacetic Acids - pharmacology</topic><topic>Lactones</topic><topic>Lactones - pharmacology</topic><topic>leaves</topic><topic>Light</topic><topic>metabolism</topic><topic>Models, Biological</topic><topic>mutants</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Peas</topic><topic>pharmacology</topic><topic>Pisum sativum</topic><topic>Pisum sativum - drug effects</topic><topic>Pisum sativum - genetics</topic><topic>Pisum sativum - growth & development</topic><topic>Pisum sativum - radiation effects</topic><topic>Plant cuttings</topic><topic>plant hormones</topic><topic>Plant physiology and development</topic><topic>Plant Roots</topic><topic>Plant Roots - drug effects</topic><topic>Plant Roots - genetics</topic><topic>Plant Roots - growth & development</topic><topic>Plant Roots - radiation effects</topic><topic>Plants</topic><topic>radiation effects</topic><topic>root primordia</topic><topic>Rooting</topic><topic>stems</topic><topic>Xylem</topic><topic>Xylem - drug effects</topic><topic>Xylem - metabolism</topic><topic>Xylem - radiation effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rasmussen, Amanda</creatorcontrib><creatorcontrib>Mason, Michael Glenn</creatorcontrib><creatorcontrib>De Cuyper, Carolien</creatorcontrib><creatorcontrib>Brewer, Philip B.</creatorcontrib><creatorcontrib>Herold, Silvia</creatorcontrib><creatorcontrib>Agusti, Javier</creatorcontrib><creatorcontrib>Geelen, Danny</creatorcontrib><creatorcontrib>Greb, Thomas</creatorcontrib><creatorcontrib>Goormachtig, Sofie</creatorcontrib><creatorcontrib>Beeckman, Tom</creatorcontrib><creatorcontrib>Beveridge, Christine Anne</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rasmussen, Amanda</au><au>Mason, Michael Glenn</au><au>De Cuyper, Carolien</au><au>Brewer, Philip B.</au><au>Herold, Silvia</au><au>Agusti, Javier</au><au>Geelen, Danny</au><au>Greb, Thomas</au><au>Goormachtig, Sofie</au><au>Beeckman, Tom</au><au>Beveridge, Christine Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strigolactones Suppress Adventitious Rooting in Arabidopsis and Pea</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2012-04-01</date><risdate>2012</risdate><volume>158</volume><issue>4</issue><spage>1976</spage><epage>1987</epage><pages>1976-1987</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Visum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>22323776</pmid><doi>10.1104/pp.111.187104</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2012-04, Vol.158 (4), p.1976-1987 |
issn | 0032-0889 1532-2548 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3320200 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adventitious roots Arabidopsis Arabidopsis - drug effects Arabidopsis - genetics Arabidopsis - growth & development Arabidopsis - radiation effects Arabidopsis Proteins Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis thaliana Auxins Biological and medical sciences Branching cell division Cytokinins Cytokinins - pharmacology DEVELOPMENT AND HORMONE ACTION drug effects Fundamental and applied biological sciences. Psychology genetics growth & development Hypocotyl Hypocotyl - drug effects Hypocotyl - growth & development Hypocotyl - radiation effects Hypocotyls Indoleacetic Acids Indoleacetic Acids - pharmacology Lactones Lactones - pharmacology leaves Light metabolism Models, Biological mutants Mutation Mutation - genetics Peas pharmacology Pisum sativum Pisum sativum - drug effects Pisum sativum - genetics Pisum sativum - growth & development Pisum sativum - radiation effects Plant cuttings plant hormones Plant physiology and development Plant Roots Plant Roots - drug effects Plant Roots - genetics Plant Roots - growth & development Plant Roots - radiation effects Plants radiation effects root primordia Rooting stems Xylem Xylem - drug effects Xylem - metabolism Xylem - radiation effects |
title | Strigolactones Suppress Adventitious Rooting in Arabidopsis and Pea |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A37%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strigolactones%20Suppress%20Adventitious%20Rooting%20in%20Arabidopsis%20and%20Pea&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Rasmussen,%20Amanda&rft.date=2012-04-01&rft.volume=158&rft.issue=4&rft.spage=1976&rft.epage=1987&rft.pages=1976-1987&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.111.187104&rft_dat=%3Cjstor_pubme%3E41496334%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1400127188&rft_id=info:pmid/22323776&rft_jstor_id=41496334&rfr_iscdi=true |