Regulatory Functions of SnRK1 in Stress-Responsive Gene Expression and in Plant Growth and Development

Sucrose-nonfermentation1-related protein kinase1 (SnRK1) is an evolutionarily conserved energy sensor protein that regulates gene expression in response to energy depletion in plants. Efforts to elucidate the functions and mechanisms of this protein kinase are hampered, however, by inherent growth d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2012-04, Vol.158 (4), p.1955-1964
Hauptverfasser: Cho, Young-Hee, Hong, Jung-Woo, Kim, Eun-Chul, Yoo, Sang-Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1964
container_issue 4
container_start_page 1955
container_title Plant physiology (Bethesda)
container_volume 158
creator Cho, Young-Hee
Hong, Jung-Woo
Kim, Eun-Chul
Yoo, Sang-Dong
description Sucrose-nonfermentation1-related protein kinase1 (SnRK1) is an evolutionarily conserved energy sensor protein that regulates gene expression in response to energy depletion in plants. Efforts to elucidate the functions and mechanisms of this protein kinase are hampered, however, by inherent growth defects of snrk1 -null mutant plants. To overcome these limitations and study SnRK1 functions in vivo, we applied a method combining transient expression in leaf mesophyll protoplasts and stable expression in transgenic plants. We found that both rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) SnRK1 activities critically influence stress-inducible gene expression and the induction of stress tolerance. Genetic, molecular, and chromatin immunoprecipitation analyses further revealed that the nuclear SnRK1 modulated target gene transcription in a submergencedependent manner. From early seedling development through late senescence, SnRKl activities appeared to modulate developmental processes in the plants. Our findings offer insight into the regulatory functions of plant SnRK1 in stressresponsive gene regulation and in plant growth and development throughout the life cycle.
doi_str_mv 10.1104/pp.111.189829
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3320198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41496332</jstor_id><sourcerecordid>41496332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c570t-76f9fa15ea3595071e516e1ebff86b370bf04ffdef0e8e51b533c82dbb997c233</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EotvCkSMoF6ReUmbsOLEvSKi0C6ISaAtny8mO21RZO9jZhf57vN1lgROnZ837NOOnx9gLhDNEqN6MY1Y8Q6UV14_YDKXgJZeVesxmAPkNSukjdpzSHQCgwOopO-KcCy6UmDG3oJv1YKcQ74vLte-mPvhUBFdc-8UnLHpfXE-RUioXlMZs9Rsq5uSpuPg5bucZL6xfbsEvg_VTMY_hx3T7MHtPGxrCuCI_PWNPnB0SPd_rCft2efH1_EN59Xn-8fzdVdnJBqayqZ12FiVZIbWEBkliTUitc6puRQOtg8q5JTkglb1WCtEpvmxbrZuOC3HC3u72jut2Rcsun452MGPsVzbem2B786_j-1tzEzZGCA6oVV5wul8Qw_c1pcms-tTRkLNRWCeDVea4qh9u_QcFroADrzCj5Q7tYkgpkjv8CMFsazTjmBXNrsbMv_o7xoH-3VsGXu8Bmzo7uGh916c_nGw01FJm7uWOu0u54oNfYaXrHFn8Ap5IsDo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1028020241</pqid></control><display><type>article</type><title>Regulatory Functions of SnRK1 in Stress-Responsive Gene Expression and in Plant Growth and Development</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Cho, Young-Hee ; Hong, Jung-Woo ; Kim, Eun-Chul ; Yoo, Sang-Dong</creator><creatorcontrib>Cho, Young-Hee ; Hong, Jung-Woo ; Kim, Eun-Chul ; Yoo, Sang-Dong</creatorcontrib><description>Sucrose-nonfermentation1-related protein kinase1 (SnRK1) is an evolutionarily conserved energy sensor protein that regulates gene expression in response to energy depletion in plants. Efforts to elucidate the functions and mechanisms of this protein kinase are hampered, however, by inherent growth defects of snrk1 -null mutant plants. To overcome these limitations and study SnRK1 functions in vivo, we applied a method combining transient expression in leaf mesophyll protoplasts and stable expression in transgenic plants. We found that both rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) SnRK1 activities critically influence stress-inducible gene expression and the induction of stress tolerance. Genetic, molecular, and chromatin immunoprecipitation analyses further revealed that the nuclear SnRK1 modulated target gene transcription in a submergencedependent manner. From early seedling development through late senescence, SnRKl activities appeared to modulate developmental processes in the plants. Our findings offer insight into the regulatory functions of plant SnRK1 in stressresponsive gene regulation and in plant growth and development throughout the life cycle.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.111.189829</identifier><identifier>PMID: 22232383</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Arabidopsis ; Arabidopsis - drug effects ; Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis Proteins ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Biological and medical sciences ; CELL BIOLOGY AND SIGNAL TRANSDUCTION ; Cell Nucleus ; Cell Nucleus - drug effects ; Cell Nucleus - enzymology ; Cell Nucleus - genetics ; Cellular senescence ; Chromatin ; Developmental biology ; drug effects ; early development ; energy ; enzymology ; Floods ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene expression regulation ; Gene Expression Regulation, Developmental ; Gene Expression Regulation, Developmental - drug effects ; Gene Expression Regulation, Plant ; Gene Expression Regulation, Plant - drug effects ; gene induction ; genes ; genetics ; growth &amp; development ; Leaves ; mesophyll ; metabolism ; Oryza ; Oryza - drug effects ; Oryza - enzymology ; Oryza - growth &amp; development ; Oryza sativa ; Oxygen ; Oxygen - pharmacology ; pharmacology ; plant development ; Plant Leaves ; Plant Leaves - drug effects ; Plant Leaves - enzymology ; Plant Leaves - growth &amp; development ; Plant physiology and development ; Plants ; Protein Binding ; Protein Binding - drug effects ; Protein Binding - genetics ; Protein Serine-Threonine Kinases ; Protein Transport ; Protein Transport - drug effects ; Protein-Serine-Threonine Kinases - metabolism ; protoplasts ; rice ; Seedlings ; Seedlings - drug effects ; Seedlings - genetics ; Seedlings - growth &amp; development ; stress tolerance ; Stress, Physiological ; Stress, Physiological - drug effects ; Stress, Physiological - genetics ; Transgenic plants</subject><ispartof>Plant physiology (Bethesda), 2012-04, Vol.158 (4), p.1955-1964</ispartof><rights>2012 American Society of Plant Biologists</rights><rights>2015 INIST-CNRS</rights><rights>2012 American Society of Plant Biologists. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c570t-76f9fa15ea3595071e516e1ebff86b370bf04ffdef0e8e51b533c82dbb997c233</citedby><cites>FETCH-LOGICAL-c570t-76f9fa15ea3595071e516e1ebff86b370bf04ffdef0e8e51b533c82dbb997c233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41496332$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41496332$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27903,27904,57995,58228</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25790655$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22232383$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cho, Young-Hee</creatorcontrib><creatorcontrib>Hong, Jung-Woo</creatorcontrib><creatorcontrib>Kim, Eun-Chul</creatorcontrib><creatorcontrib>Yoo, Sang-Dong</creatorcontrib><title>Regulatory Functions of SnRK1 in Stress-Responsive Gene Expression and in Plant Growth and Development</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Sucrose-nonfermentation1-related protein kinase1 (SnRK1) is an evolutionarily conserved energy sensor protein that regulates gene expression in response to energy depletion in plants. Efforts to elucidate the functions and mechanisms of this protein kinase are hampered, however, by inherent growth defects of snrk1 -null mutant plants. To overcome these limitations and study SnRK1 functions in vivo, we applied a method combining transient expression in leaf mesophyll protoplasts and stable expression in transgenic plants. We found that both rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) SnRK1 activities critically influence stress-inducible gene expression and the induction of stress tolerance. Genetic, molecular, and chromatin immunoprecipitation analyses further revealed that the nuclear SnRK1 modulated target gene transcription in a submergencedependent manner. From early seedling development through late senescence, SnRKl activities appeared to modulate developmental processes in the plants. Our findings offer insight into the regulatory functions of plant SnRK1 in stressresponsive gene regulation and in plant growth and development throughout the life cycle.</description><subject>Arabidopsis</subject><subject>Arabidopsis - drug effects</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis Proteins</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biological and medical sciences</subject><subject>CELL BIOLOGY AND SIGNAL TRANSDUCTION</subject><subject>Cell Nucleus</subject><subject>Cell Nucleus - drug effects</subject><subject>Cell Nucleus - enzymology</subject><subject>Cell Nucleus - genetics</subject><subject>Cellular senescence</subject><subject>Chromatin</subject><subject>Developmental biology</subject><subject>drug effects</subject><subject>early development</subject><subject>energy</subject><subject>enzymology</subject><subject>Floods</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene expression regulation</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Expression Regulation, Developmental - drug effects</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>gene induction</subject><subject>genes</subject><subject>genetics</subject><subject>growth &amp; development</subject><subject>Leaves</subject><subject>mesophyll</subject><subject>metabolism</subject><subject>Oryza</subject><subject>Oryza - drug effects</subject><subject>Oryza - enzymology</subject><subject>Oryza - growth &amp; development</subject><subject>Oryza sativa</subject><subject>Oxygen</subject><subject>Oxygen - pharmacology</subject><subject>pharmacology</subject><subject>plant development</subject><subject>Plant Leaves</subject><subject>Plant Leaves - drug effects</subject><subject>Plant Leaves - enzymology</subject><subject>Plant Leaves - growth &amp; development</subject><subject>Plant physiology and development</subject><subject>Plants</subject><subject>Protein Binding</subject><subject>Protein Binding - drug effects</subject><subject>Protein Binding - genetics</subject><subject>Protein Serine-Threonine Kinases</subject><subject>Protein Transport</subject><subject>Protein Transport - drug effects</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>protoplasts</subject><subject>rice</subject><subject>Seedlings</subject><subject>Seedlings - drug effects</subject><subject>Seedlings - genetics</subject><subject>Seedlings - growth &amp; development</subject><subject>stress tolerance</subject><subject>Stress, Physiological</subject><subject>Stress, Physiological - drug effects</subject><subject>Stress, Physiological - genetics</subject><subject>Transgenic plants</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhS0EotvCkSMoF6ReUmbsOLEvSKi0C6ISaAtny8mO21RZO9jZhf57vN1lgROnZ837NOOnx9gLhDNEqN6MY1Y8Q6UV14_YDKXgJZeVesxmAPkNSukjdpzSHQCgwOopO-KcCy6UmDG3oJv1YKcQ74vLte-mPvhUBFdc-8UnLHpfXE-RUioXlMZs9Rsq5uSpuPg5bucZL6xfbsEvg_VTMY_hx3T7MHtPGxrCuCI_PWNPnB0SPd_rCft2efH1_EN59Xn-8fzdVdnJBqayqZ12FiVZIbWEBkliTUitc6puRQOtg8q5JTkglb1WCtEpvmxbrZuOC3HC3u72jut2Rcsun452MGPsVzbem2B786_j-1tzEzZGCA6oVV5wul8Qw_c1pcms-tTRkLNRWCeDVea4qh9u_QcFroADrzCj5Q7tYkgpkjv8CMFsazTjmBXNrsbMv_o7xoH-3VsGXu8Bmzo7uGh916c_nGw01FJm7uWOu0u54oNfYaXrHFn8Ap5IsDo</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Cho, Young-Hee</creator><creator>Hong, Jung-Woo</creator><creator>Kim, Eun-Chul</creator><creator>Yoo, Sang-Dong</creator><general>American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20120401</creationdate><title>Regulatory Functions of SnRK1 in Stress-Responsive Gene Expression and in Plant Growth and Development</title><author>Cho, Young-Hee ; Hong, Jung-Woo ; Kim, Eun-Chul ; Yoo, Sang-Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c570t-76f9fa15ea3595071e516e1ebff86b370bf04ffdef0e8e51b533c82dbb997c233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - drug effects</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis Proteins</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biological and medical sciences</topic><topic>CELL BIOLOGY AND SIGNAL TRANSDUCTION</topic><topic>Cell Nucleus</topic><topic>Cell Nucleus - drug effects</topic><topic>Cell Nucleus - enzymology</topic><topic>Cell Nucleus - genetics</topic><topic>Cellular senescence</topic><topic>Chromatin</topic><topic>Developmental biology</topic><topic>drug effects</topic><topic>early development</topic><topic>energy</topic><topic>enzymology</topic><topic>Floods</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene expression regulation</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Expression Regulation, Developmental - drug effects</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>gene induction</topic><topic>genes</topic><topic>genetics</topic><topic>growth &amp; development</topic><topic>Leaves</topic><topic>mesophyll</topic><topic>metabolism</topic><topic>Oryza</topic><topic>Oryza - drug effects</topic><topic>Oryza - enzymology</topic><topic>Oryza - growth &amp; development</topic><topic>Oryza sativa</topic><topic>Oxygen</topic><topic>Oxygen - pharmacology</topic><topic>pharmacology</topic><topic>plant development</topic><topic>Plant Leaves</topic><topic>Plant Leaves - drug effects</topic><topic>Plant Leaves - enzymology</topic><topic>Plant Leaves - growth &amp; development</topic><topic>Plant physiology and development</topic><topic>Plants</topic><topic>Protein Binding</topic><topic>Protein Binding - drug effects</topic><topic>Protein Binding - genetics</topic><topic>Protein Serine-Threonine Kinases</topic><topic>Protein Transport</topic><topic>Protein Transport - drug effects</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>protoplasts</topic><topic>rice</topic><topic>Seedlings</topic><topic>Seedlings - drug effects</topic><topic>Seedlings - genetics</topic><topic>Seedlings - growth &amp; development</topic><topic>stress tolerance</topic><topic>Stress, Physiological</topic><topic>Stress, Physiological - drug effects</topic><topic>Stress, Physiological - genetics</topic><topic>Transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Young-Hee</creatorcontrib><creatorcontrib>Hong, Jung-Woo</creatorcontrib><creatorcontrib>Kim, Eun-Chul</creatorcontrib><creatorcontrib>Yoo, Sang-Dong</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Young-Hee</au><au>Hong, Jung-Woo</au><au>Kim, Eun-Chul</au><au>Yoo, Sang-Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulatory Functions of SnRK1 in Stress-Responsive Gene Expression and in Plant Growth and Development</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2012-04-01</date><risdate>2012</risdate><volume>158</volume><issue>4</issue><spage>1955</spage><epage>1964</epage><pages>1955-1964</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Sucrose-nonfermentation1-related protein kinase1 (SnRK1) is an evolutionarily conserved energy sensor protein that regulates gene expression in response to energy depletion in plants. Efforts to elucidate the functions and mechanisms of this protein kinase are hampered, however, by inherent growth defects of snrk1 -null mutant plants. To overcome these limitations and study SnRK1 functions in vivo, we applied a method combining transient expression in leaf mesophyll protoplasts and stable expression in transgenic plants. We found that both rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) SnRK1 activities critically influence stress-inducible gene expression and the induction of stress tolerance. Genetic, molecular, and chromatin immunoprecipitation analyses further revealed that the nuclear SnRK1 modulated target gene transcription in a submergencedependent manner. From early seedling development through late senescence, SnRKl activities appeared to modulate developmental processes in the plants. Our findings offer insight into the regulatory functions of plant SnRK1 in stressresponsive gene regulation and in plant growth and development throughout the life cycle.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>22232383</pmid><doi>10.1104/pp.111.189829</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2012-04, Vol.158 (4), p.1955-1964
issn 0032-0889
1532-2548
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3320198
source MEDLINE; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects Arabidopsis
Arabidopsis - drug effects
Arabidopsis - enzymology
Arabidopsis - genetics
Arabidopsis Proteins
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Biological and medical sciences
CELL BIOLOGY AND SIGNAL TRANSDUCTION
Cell Nucleus
Cell Nucleus - drug effects
Cell Nucleus - enzymology
Cell Nucleus - genetics
Cellular senescence
Chromatin
Developmental biology
drug effects
early development
energy
enzymology
Floods
Fundamental and applied biological sciences. Psychology
Gene expression
Gene expression regulation
Gene Expression Regulation, Developmental
Gene Expression Regulation, Developmental - drug effects
Gene Expression Regulation, Plant
Gene Expression Regulation, Plant - drug effects
gene induction
genes
genetics
growth & development
Leaves
mesophyll
metabolism
Oryza
Oryza - drug effects
Oryza - enzymology
Oryza - growth & development
Oryza sativa
Oxygen
Oxygen - pharmacology
pharmacology
plant development
Plant Leaves
Plant Leaves - drug effects
Plant Leaves - enzymology
Plant Leaves - growth & development
Plant physiology and development
Plants
Protein Binding
Protein Binding - drug effects
Protein Binding - genetics
Protein Serine-Threonine Kinases
Protein Transport
Protein Transport - drug effects
Protein-Serine-Threonine Kinases - metabolism
protoplasts
rice
Seedlings
Seedlings - drug effects
Seedlings - genetics
Seedlings - growth & development
stress tolerance
Stress, Physiological
Stress, Physiological - drug effects
Stress, Physiological - genetics
Transgenic plants
title Regulatory Functions of SnRK1 in Stress-Responsive Gene Expression and in Plant Growth and Development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulatory%20Functions%20of%20SnRK1%20in%20Stress-Responsive%20Gene%20Expression%20and%20in%20Plant%20Growth%20and%20Development&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Cho,%20Young-Hee&rft.date=2012-04-01&rft.volume=158&rft.issue=4&rft.spage=1955&rft.epage=1964&rft.pages=1955-1964&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.111.189829&rft_dat=%3Cjstor_pubme%3E41496332%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1028020241&rft_id=info:pmid/22232383&rft_jstor_id=41496332&rfr_iscdi=true