Regulatory Functions of SnRK1 in Stress-Responsive Gene Expression and in Plant Growth and Development
Sucrose-nonfermentation1-related protein kinase1 (SnRK1) is an evolutionarily conserved energy sensor protein that regulates gene expression in response to energy depletion in plants. Efforts to elucidate the functions and mechanisms of this protein kinase are hampered, however, by inherent growth d...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2012-04, Vol.158 (4), p.1955-1964 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1964 |
---|---|
container_issue | 4 |
container_start_page | 1955 |
container_title | Plant physiology (Bethesda) |
container_volume | 158 |
creator | Cho, Young-Hee Hong, Jung-Woo Kim, Eun-Chul Yoo, Sang-Dong |
description | Sucrose-nonfermentation1-related protein kinase1 (SnRK1) is an evolutionarily conserved energy sensor protein that regulates gene expression in response to energy depletion in plants. Efforts to elucidate the functions and mechanisms of this protein kinase are hampered, however, by inherent growth defects of snrk1 -null mutant plants. To overcome these limitations and study SnRK1 functions in vivo, we applied a method combining transient expression in leaf mesophyll protoplasts and stable expression in transgenic plants. We found that both rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) SnRK1 activities critically influence stress-inducible gene expression and the induction of stress tolerance. Genetic, molecular, and chromatin immunoprecipitation analyses further revealed that the nuclear SnRK1 modulated target gene transcription in a submergencedependent manner. From early seedling development through late senescence, SnRKl activities appeared to modulate developmental processes in the plants. Our findings offer insight into the regulatory functions of plant SnRK1 in stressresponsive gene regulation and in plant growth and development throughout the life cycle. |
doi_str_mv | 10.1104/pp.111.189829 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3320198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41496332</jstor_id><sourcerecordid>41496332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c570t-76f9fa15ea3595071e516e1ebff86b370bf04ffdef0e8e51b533c82dbb997c233</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EotvCkSMoF6ReUmbsOLEvSKi0C6ISaAtny8mO21RZO9jZhf57vN1lgROnZ837NOOnx9gLhDNEqN6MY1Y8Q6UV14_YDKXgJZeVesxmAPkNSukjdpzSHQCgwOopO-KcCy6UmDG3oJv1YKcQ74vLte-mPvhUBFdc-8UnLHpfXE-RUioXlMZs9Rsq5uSpuPg5bucZL6xfbsEvg_VTMY_hx3T7MHtPGxrCuCI_PWNPnB0SPd_rCft2efH1_EN59Xn-8fzdVdnJBqayqZ12FiVZIbWEBkliTUitc6puRQOtg8q5JTkglb1WCtEpvmxbrZuOC3HC3u72jut2Rcsun452MGPsVzbem2B786_j-1tzEzZGCA6oVV5wul8Qw_c1pcms-tTRkLNRWCeDVea4qh9u_QcFroADrzCj5Q7tYkgpkjv8CMFsazTjmBXNrsbMv_o7xoH-3VsGXu8Bmzo7uGh916c_nGw01FJm7uWOu0u54oNfYaXrHFn8Ap5IsDo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1028020241</pqid></control><display><type>article</type><title>Regulatory Functions of SnRK1 in Stress-Responsive Gene Expression and in Plant Growth and Development</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Cho, Young-Hee ; Hong, Jung-Woo ; Kim, Eun-Chul ; Yoo, Sang-Dong</creator><creatorcontrib>Cho, Young-Hee ; Hong, Jung-Woo ; Kim, Eun-Chul ; Yoo, Sang-Dong</creatorcontrib><description>Sucrose-nonfermentation1-related protein kinase1 (SnRK1) is an evolutionarily conserved energy sensor protein that regulates gene expression in response to energy depletion in plants. Efforts to elucidate the functions and mechanisms of this protein kinase are hampered, however, by inherent growth defects of snrk1 -null mutant plants. To overcome these limitations and study SnRK1 functions in vivo, we applied a method combining transient expression in leaf mesophyll protoplasts and stable expression in transgenic plants. We found that both rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) SnRK1 activities critically influence stress-inducible gene expression and the induction of stress tolerance. Genetic, molecular, and chromatin immunoprecipitation analyses further revealed that the nuclear SnRK1 modulated target gene transcription in a submergencedependent manner. From early seedling development through late senescence, SnRKl activities appeared to modulate developmental processes in the plants. Our findings offer insight into the regulatory functions of plant SnRK1 in stressresponsive gene regulation and in plant growth and development throughout the life cycle.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.111.189829</identifier><identifier>PMID: 22232383</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Arabidopsis ; Arabidopsis - drug effects ; Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis Proteins ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Biological and medical sciences ; CELL BIOLOGY AND SIGNAL TRANSDUCTION ; Cell Nucleus ; Cell Nucleus - drug effects ; Cell Nucleus - enzymology ; Cell Nucleus - genetics ; Cellular senescence ; Chromatin ; Developmental biology ; drug effects ; early development ; energy ; enzymology ; Floods ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene expression regulation ; Gene Expression Regulation, Developmental ; Gene Expression Regulation, Developmental - drug effects ; Gene Expression Regulation, Plant ; Gene Expression Regulation, Plant - drug effects ; gene induction ; genes ; genetics ; growth & development ; Leaves ; mesophyll ; metabolism ; Oryza ; Oryza - drug effects ; Oryza - enzymology ; Oryza - growth & development ; Oryza sativa ; Oxygen ; Oxygen - pharmacology ; pharmacology ; plant development ; Plant Leaves ; Plant Leaves - drug effects ; Plant Leaves - enzymology ; Plant Leaves - growth & development ; Plant physiology and development ; Plants ; Protein Binding ; Protein Binding - drug effects ; Protein Binding - genetics ; Protein Serine-Threonine Kinases ; Protein Transport ; Protein Transport - drug effects ; Protein-Serine-Threonine Kinases - metabolism ; protoplasts ; rice ; Seedlings ; Seedlings - drug effects ; Seedlings - genetics ; Seedlings - growth & development ; stress tolerance ; Stress, Physiological ; Stress, Physiological - drug effects ; Stress, Physiological - genetics ; Transgenic plants</subject><ispartof>Plant physiology (Bethesda), 2012-04, Vol.158 (4), p.1955-1964</ispartof><rights>2012 American Society of Plant Biologists</rights><rights>2015 INIST-CNRS</rights><rights>2012 American Society of Plant Biologists. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c570t-76f9fa15ea3595071e516e1ebff86b370bf04ffdef0e8e51b533c82dbb997c233</citedby><cites>FETCH-LOGICAL-c570t-76f9fa15ea3595071e516e1ebff86b370bf04ffdef0e8e51b533c82dbb997c233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41496332$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41496332$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27903,27904,57995,58228</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25790655$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22232383$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cho, Young-Hee</creatorcontrib><creatorcontrib>Hong, Jung-Woo</creatorcontrib><creatorcontrib>Kim, Eun-Chul</creatorcontrib><creatorcontrib>Yoo, Sang-Dong</creatorcontrib><title>Regulatory Functions of SnRK1 in Stress-Responsive Gene Expression and in Plant Growth and Development</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Sucrose-nonfermentation1-related protein kinase1 (SnRK1) is an evolutionarily conserved energy sensor protein that regulates gene expression in response to energy depletion in plants. Efforts to elucidate the functions and mechanisms of this protein kinase are hampered, however, by inherent growth defects of snrk1 -null mutant plants. To overcome these limitations and study SnRK1 functions in vivo, we applied a method combining transient expression in leaf mesophyll protoplasts and stable expression in transgenic plants. We found that both rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) SnRK1 activities critically influence stress-inducible gene expression and the induction of stress tolerance. Genetic, molecular, and chromatin immunoprecipitation analyses further revealed that the nuclear SnRK1 modulated target gene transcription in a submergencedependent manner. From early seedling development through late senescence, SnRKl activities appeared to modulate developmental processes in the plants. Our findings offer insight into the regulatory functions of plant SnRK1 in stressresponsive gene regulation and in plant growth and development throughout the life cycle.</description><subject>Arabidopsis</subject><subject>Arabidopsis - drug effects</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis Proteins</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biological and medical sciences</subject><subject>CELL BIOLOGY AND SIGNAL TRANSDUCTION</subject><subject>Cell Nucleus</subject><subject>Cell Nucleus - drug effects</subject><subject>Cell Nucleus - enzymology</subject><subject>Cell Nucleus - genetics</subject><subject>Cellular senescence</subject><subject>Chromatin</subject><subject>Developmental biology</subject><subject>drug effects</subject><subject>early development</subject><subject>energy</subject><subject>enzymology</subject><subject>Floods</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene expression regulation</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Expression Regulation, Developmental - drug effects</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>gene induction</subject><subject>genes</subject><subject>genetics</subject><subject>growth & development</subject><subject>Leaves</subject><subject>mesophyll</subject><subject>metabolism</subject><subject>Oryza</subject><subject>Oryza - drug effects</subject><subject>Oryza - enzymology</subject><subject>Oryza - growth & development</subject><subject>Oryza sativa</subject><subject>Oxygen</subject><subject>Oxygen - pharmacology</subject><subject>pharmacology</subject><subject>plant development</subject><subject>Plant Leaves</subject><subject>Plant Leaves - drug effects</subject><subject>Plant Leaves - enzymology</subject><subject>Plant Leaves - growth & development</subject><subject>Plant physiology and development</subject><subject>Plants</subject><subject>Protein Binding</subject><subject>Protein Binding - drug effects</subject><subject>Protein Binding - genetics</subject><subject>Protein Serine-Threonine Kinases</subject><subject>Protein Transport</subject><subject>Protein Transport - drug effects</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>protoplasts</subject><subject>rice</subject><subject>Seedlings</subject><subject>Seedlings - drug effects</subject><subject>Seedlings - genetics</subject><subject>Seedlings - growth & development</subject><subject>stress tolerance</subject><subject>Stress, Physiological</subject><subject>Stress, Physiological - drug effects</subject><subject>Stress, Physiological - genetics</subject><subject>Transgenic plants</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhS0EotvCkSMoF6ReUmbsOLEvSKi0C6ISaAtny8mO21RZO9jZhf57vN1lgROnZ837NOOnx9gLhDNEqN6MY1Y8Q6UV14_YDKXgJZeVesxmAPkNSukjdpzSHQCgwOopO-KcCy6UmDG3oJv1YKcQ74vLte-mPvhUBFdc-8UnLHpfXE-RUioXlMZs9Rsq5uSpuPg5bucZL6xfbsEvg_VTMY_hx3T7MHtPGxrCuCI_PWNPnB0SPd_rCft2efH1_EN59Xn-8fzdVdnJBqayqZ12FiVZIbWEBkliTUitc6puRQOtg8q5JTkglb1WCtEpvmxbrZuOC3HC3u72jut2Rcsun452MGPsVzbem2B786_j-1tzEzZGCA6oVV5wul8Qw_c1pcms-tTRkLNRWCeDVea4qh9u_QcFroADrzCj5Q7tYkgpkjv8CMFsazTjmBXNrsbMv_o7xoH-3VsGXu8Bmzo7uGh916c_nGw01FJm7uWOu0u54oNfYaXrHFn8Ap5IsDo</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Cho, Young-Hee</creator><creator>Hong, Jung-Woo</creator><creator>Kim, Eun-Chul</creator><creator>Yoo, Sang-Dong</creator><general>American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20120401</creationdate><title>Regulatory Functions of SnRK1 in Stress-Responsive Gene Expression and in Plant Growth and Development</title><author>Cho, Young-Hee ; Hong, Jung-Woo ; Kim, Eun-Chul ; Yoo, Sang-Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c570t-76f9fa15ea3595071e516e1ebff86b370bf04ffdef0e8e51b533c82dbb997c233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - drug effects</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis Proteins</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biological and medical sciences</topic><topic>CELL BIOLOGY AND SIGNAL TRANSDUCTION</topic><topic>Cell Nucleus</topic><topic>Cell Nucleus - drug effects</topic><topic>Cell Nucleus - enzymology</topic><topic>Cell Nucleus - genetics</topic><topic>Cellular senescence</topic><topic>Chromatin</topic><topic>Developmental biology</topic><topic>drug effects</topic><topic>early development</topic><topic>energy</topic><topic>enzymology</topic><topic>Floods</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene expression regulation</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Expression Regulation, Developmental - drug effects</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>gene induction</topic><topic>genes</topic><topic>genetics</topic><topic>growth & development</topic><topic>Leaves</topic><topic>mesophyll</topic><topic>metabolism</topic><topic>Oryza</topic><topic>Oryza - drug effects</topic><topic>Oryza - enzymology</topic><topic>Oryza - growth & development</topic><topic>Oryza sativa</topic><topic>Oxygen</topic><topic>Oxygen - pharmacology</topic><topic>pharmacology</topic><topic>plant development</topic><topic>Plant Leaves</topic><topic>Plant Leaves - drug effects</topic><topic>Plant Leaves - enzymology</topic><topic>Plant Leaves - growth & development</topic><topic>Plant physiology and development</topic><topic>Plants</topic><topic>Protein Binding</topic><topic>Protein Binding - drug effects</topic><topic>Protein Binding - genetics</topic><topic>Protein Serine-Threonine Kinases</topic><topic>Protein Transport</topic><topic>Protein Transport - drug effects</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>protoplasts</topic><topic>rice</topic><topic>Seedlings</topic><topic>Seedlings - drug effects</topic><topic>Seedlings - genetics</topic><topic>Seedlings - growth & development</topic><topic>stress tolerance</topic><topic>Stress, Physiological</topic><topic>Stress, Physiological - drug effects</topic><topic>Stress, Physiological - genetics</topic><topic>Transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Young-Hee</creatorcontrib><creatorcontrib>Hong, Jung-Woo</creatorcontrib><creatorcontrib>Kim, Eun-Chul</creatorcontrib><creatorcontrib>Yoo, Sang-Dong</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Young-Hee</au><au>Hong, Jung-Woo</au><au>Kim, Eun-Chul</au><au>Yoo, Sang-Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulatory Functions of SnRK1 in Stress-Responsive Gene Expression and in Plant Growth and Development</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2012-04-01</date><risdate>2012</risdate><volume>158</volume><issue>4</issue><spage>1955</spage><epage>1964</epage><pages>1955-1964</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Sucrose-nonfermentation1-related protein kinase1 (SnRK1) is an evolutionarily conserved energy sensor protein that regulates gene expression in response to energy depletion in plants. Efforts to elucidate the functions and mechanisms of this protein kinase are hampered, however, by inherent growth defects of snrk1 -null mutant plants. To overcome these limitations and study SnRK1 functions in vivo, we applied a method combining transient expression in leaf mesophyll protoplasts and stable expression in transgenic plants. We found that both rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) SnRK1 activities critically influence stress-inducible gene expression and the induction of stress tolerance. Genetic, molecular, and chromatin immunoprecipitation analyses further revealed that the nuclear SnRK1 modulated target gene transcription in a submergencedependent manner. From early seedling development through late senescence, SnRKl activities appeared to modulate developmental processes in the plants. Our findings offer insight into the regulatory functions of plant SnRK1 in stressresponsive gene regulation and in plant growth and development throughout the life cycle.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>22232383</pmid><doi>10.1104/pp.111.189829</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2012-04, Vol.158 (4), p.1955-1964 |
issn | 0032-0889 1532-2548 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3320198 |
source | MEDLINE; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals |
subjects | Arabidopsis Arabidopsis - drug effects Arabidopsis - enzymology Arabidopsis - genetics Arabidopsis Proteins Arabidopsis Proteins - metabolism Arabidopsis thaliana Biological and medical sciences CELL BIOLOGY AND SIGNAL TRANSDUCTION Cell Nucleus Cell Nucleus - drug effects Cell Nucleus - enzymology Cell Nucleus - genetics Cellular senescence Chromatin Developmental biology drug effects early development energy enzymology Floods Fundamental and applied biological sciences. Psychology Gene expression Gene expression regulation Gene Expression Regulation, Developmental Gene Expression Regulation, Developmental - drug effects Gene Expression Regulation, Plant Gene Expression Regulation, Plant - drug effects gene induction genes genetics growth & development Leaves mesophyll metabolism Oryza Oryza - drug effects Oryza - enzymology Oryza - growth & development Oryza sativa Oxygen Oxygen - pharmacology pharmacology plant development Plant Leaves Plant Leaves - drug effects Plant Leaves - enzymology Plant Leaves - growth & development Plant physiology and development Plants Protein Binding Protein Binding - drug effects Protein Binding - genetics Protein Serine-Threonine Kinases Protein Transport Protein Transport - drug effects Protein-Serine-Threonine Kinases - metabolism protoplasts rice Seedlings Seedlings - drug effects Seedlings - genetics Seedlings - growth & development stress tolerance Stress, Physiological Stress, Physiological - drug effects Stress, Physiological - genetics Transgenic plants |
title | Regulatory Functions of SnRK1 in Stress-Responsive Gene Expression and in Plant Growth and Development |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulatory%20Functions%20of%20SnRK1%20in%20Stress-Responsive%20Gene%20Expression%20and%20in%20Plant%20Growth%20and%20Development&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Cho,%20Young-Hee&rft.date=2012-04-01&rft.volume=158&rft.issue=4&rft.spage=1955&rft.epage=1964&rft.pages=1955-1964&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.111.189829&rft_dat=%3Cjstor_pubme%3E41496332%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1028020241&rft_id=info:pmid/22232383&rft_jstor_id=41496332&rfr_iscdi=true |