The molecular architecture of human Dicer
Current understanding of the structure of Dicer is restricted to simple forms of the enzyme from lower eukaryotes or isolated domains from higher eukaryotic Dicers. A new domain localization strategy was developed to determine the structure of human Dicer by EM, revealing the structural basis for sm...
Gespeichert in:
Veröffentlicht in: | Nature structural & molecular biology 2012-04, Vol.19 (4), p.436-440 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 440 |
---|---|
container_issue | 4 |
container_start_page | 436 |
container_title | Nature structural & molecular biology |
container_volume | 19 |
creator | Lau, Pick-Wei Guiley, Keelan Z De, Nabanita Potter, Clinton S Carragher, Bridget MacRae, Ian J |
description | Current understanding of the structure of Dicer is restricted to simple forms of the enzyme from lower eukaryotes or isolated domains from higher eukaryotic Dicers. A new domain localization strategy was developed to determine the structure of human Dicer by EM, revealing the structural basis for small RNA production in eukaryotes.
Dicer is a multidomain enzyme that generates small RNAs for gene silencing in eukaryotes. Current understanding of Dicer structure is restricted to simple forms of the enzyme, whereas that of the large and complex Dicer in metazoans is unknown. Here we describe a new domain localization strategy developed to determine the structure of human Dicer by EM. A rearrangement of the nuclease core, compared to the archetypal
Giardia lamblia
Dicer, explains how metazoan Dicers generate products that are 21–23 nucleotides in length. The helicase domains form a clamp-like structure adjacent to the RNase III active site, facilitating recognition of pre-miRNA loops or translocation on long dsRNAs.
Drosophila melanogaster
Dicer-2 shows similar features, revealing that the three-dimensional architecture is conserved. These results illuminate the structural basis for small RNA production in eukaryotes and provide a versatile new tool for determining structures of large molecular machines. |
doi_str_mv | 10.1038/nsmb.2268 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3319852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A292236743</galeid><sourcerecordid>A292236743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-fde145727e89df2ba6a3cbe1ff51213a0d3ce36983291265b06493363825dafc3</originalsourceid><addsrcrecordid>eNptkl1LHDEUhoNUql174R-QgV4UhV3zMZlJbgqLbVUQhNZeh0zmZDcyk2gyU-q_N4N2dUVykXDOc97zkYPQIcELgpk49alvFpRWYgftE17yuZSCf9i8JdtDn1K6xZhyXrOPaI_Skla8FPvo-GYNRR86MGOnY6GjWbsBzDBGKIIt1mOvffHdGYgHaNfqLsHn53uG_vz8cXN2Mb-6Pr88W17NDWdimNsWSMlrWoOQraWNrjQzDRBrOaGEadwyA6ySglFJchENrkrJWMUE5a22hs3Qtyfdu7HpoTXgh6g7dRddr-ODCtqpbY93a7UKfxVjJLdNs8DXZ4EY7kdIg-pdMtB12kMYk5KVyFOjOekMfXlD3oYx-tydIpjIXHBd4hdqpTtQztuQ05pJUy2ppJRVdTlpLd6h8mmhdyZ4sC7btwKOtwIyM8C_YaXHlNTl71_vsiaGlCLYzTgIVtMKqGkF1LQCmT16Pb8N-f_PM3DyBKTs8iuIr7t-q_YIISC3Nw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019512740</pqid></control><display><type>article</type><title>The molecular architecture of human Dicer</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lau, Pick-Wei ; Guiley, Keelan Z ; De, Nabanita ; Potter, Clinton S ; Carragher, Bridget ; MacRae, Ian J</creator><creatorcontrib>Lau, Pick-Wei ; Guiley, Keelan Z ; De, Nabanita ; Potter, Clinton S ; Carragher, Bridget ; MacRae, Ian J</creatorcontrib><description>Current understanding of the structure of Dicer is restricted to simple forms of the enzyme from lower eukaryotes or isolated domains from higher eukaryotic Dicers. A new domain localization strategy was developed to determine the structure of human Dicer by EM, revealing the structural basis for small RNA production in eukaryotes.
Dicer is a multidomain enzyme that generates small RNAs for gene silencing in eukaryotes. Current understanding of Dicer structure is restricted to simple forms of the enzyme, whereas that of the large and complex Dicer in metazoans is unknown. Here we describe a new domain localization strategy developed to determine the structure of human Dicer by EM. A rearrangement of the nuclease core, compared to the archetypal
Giardia lamblia
Dicer, explains how metazoan Dicers generate products that are 21–23 nucleotides in length. The helicase domains form a clamp-like structure adjacent to the RNase III active site, facilitating recognition of pre-miRNA loops or translocation on long dsRNAs.
Drosophila melanogaster
Dicer-2 shows similar features, revealing that the three-dimensional architecture is conserved. These results illuminate the structural basis for small RNA production in eukaryotes and provide a versatile new tool for determining structures of large molecular machines.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/nsmb.2268</identifier><identifier>PMID: 22426548</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/45/535 ; Animals ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; DEAD-box RNA Helicases - chemistry ; DEAD-box RNA Helicases - metabolism ; Drosophila melanogaster - chemistry ; Drosophila melanogaster - enzymology ; Enzymes ; Eukaryotes ; Gene silencing ; Genomics ; Giardia lamblia - chemistry ; Giardia lamblia - enzymology ; Humans ; Life Sciences ; Membrane Biology ; Microscopy, Electron - methods ; Models, Molecular ; Molecular biology ; Physiological aspects ; Protein Conformation ; Protein Structure ; Protein Structure, Tertiary ; Ribonuclease ; Ribonuclease III - chemistry ; Ribonuclease III - metabolism ; Ribonucleases - chemistry ; Ribonucleases - metabolism ; Ribonucleic acid ; RNA ; RNA - metabolism ; Structure ; Synthesis ; Translocation</subject><ispartof>Nature structural & molecular biology, 2012-04, Vol.19 (4), p.436-440</ispartof><rights>Springer Nature America, Inc. 2012</rights><rights>COPYRIGHT 2012 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Apr 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-fde145727e89df2ba6a3cbe1ff51213a0d3ce36983291265b06493363825dafc3</citedby><cites>FETCH-LOGICAL-c538t-fde145727e89df2ba6a3cbe1ff51213a0d3ce36983291265b06493363825dafc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nsmb.2268$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nsmb.2268$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22426548$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lau, Pick-Wei</creatorcontrib><creatorcontrib>Guiley, Keelan Z</creatorcontrib><creatorcontrib>De, Nabanita</creatorcontrib><creatorcontrib>Potter, Clinton S</creatorcontrib><creatorcontrib>Carragher, Bridget</creatorcontrib><creatorcontrib>MacRae, Ian J</creatorcontrib><title>The molecular architecture of human Dicer</title><title>Nature structural & molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>Current understanding of the structure of Dicer is restricted to simple forms of the enzyme from lower eukaryotes or isolated domains from higher eukaryotic Dicers. A new domain localization strategy was developed to determine the structure of human Dicer by EM, revealing the structural basis for small RNA production in eukaryotes.
Dicer is a multidomain enzyme that generates small RNAs for gene silencing in eukaryotes. Current understanding of Dicer structure is restricted to simple forms of the enzyme, whereas that of the large and complex Dicer in metazoans is unknown. Here we describe a new domain localization strategy developed to determine the structure of human Dicer by EM. A rearrangement of the nuclease core, compared to the archetypal
Giardia lamblia
Dicer, explains how metazoan Dicers generate products that are 21–23 nucleotides in length. The helicase domains form a clamp-like structure adjacent to the RNase III active site, facilitating recognition of pre-miRNA loops or translocation on long dsRNAs.
Drosophila melanogaster
Dicer-2 shows similar features, revealing that the three-dimensional architecture is conserved. These results illuminate the structural basis for small RNA production in eukaryotes and provide a versatile new tool for determining structures of large molecular machines.</description><subject>631/45/535</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>DEAD-box RNA Helicases - chemistry</subject><subject>DEAD-box RNA Helicases - metabolism</subject><subject>Drosophila melanogaster - chemistry</subject><subject>Drosophila melanogaster - enzymology</subject><subject>Enzymes</subject><subject>Eukaryotes</subject><subject>Gene silencing</subject><subject>Genomics</subject><subject>Giardia lamblia - chemistry</subject><subject>Giardia lamblia - enzymology</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Membrane Biology</subject><subject>Microscopy, Electron - methods</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Physiological aspects</subject><subject>Protein Conformation</subject><subject>Protein Structure</subject><subject>Protein Structure, Tertiary</subject><subject>Ribonuclease</subject><subject>Ribonuclease III - chemistry</subject><subject>Ribonuclease III - metabolism</subject><subject>Ribonucleases - chemistry</subject><subject>Ribonucleases - metabolism</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA - metabolism</subject><subject>Structure</subject><subject>Synthesis</subject><subject>Translocation</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkl1LHDEUhoNUql174R-QgV4UhV3zMZlJbgqLbVUQhNZeh0zmZDcyk2gyU-q_N4N2dUVykXDOc97zkYPQIcELgpk49alvFpRWYgftE17yuZSCf9i8JdtDn1K6xZhyXrOPaI_Skla8FPvo-GYNRR86MGOnY6GjWbsBzDBGKIIt1mOvffHdGYgHaNfqLsHn53uG_vz8cXN2Mb-6Pr88W17NDWdimNsWSMlrWoOQraWNrjQzDRBrOaGEadwyA6ySglFJchENrkrJWMUE5a22hs3Qtyfdu7HpoTXgh6g7dRddr-ODCtqpbY93a7UKfxVjJLdNs8DXZ4EY7kdIg-pdMtB12kMYk5KVyFOjOekMfXlD3oYx-tydIpjIXHBd4hdqpTtQztuQ05pJUy2ppJRVdTlpLd6h8mmhdyZ4sC7btwKOtwIyM8C_YaXHlNTl71_vsiaGlCLYzTgIVtMKqGkF1LQCmT16Pb8N-f_PM3DyBKTs8iuIr7t-q_YIISC3Nw</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Lau, Pick-Wei</creator><creator>Guiley, Keelan Z</creator><creator>De, Nabanita</creator><creator>Potter, Clinton S</creator><creator>Carragher, Bridget</creator><creator>MacRae, Ian J</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120401</creationdate><title>The molecular architecture of human Dicer</title><author>Lau, Pick-Wei ; Guiley, Keelan Z ; De, Nabanita ; Potter, Clinton S ; Carragher, Bridget ; MacRae, Ian J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-fde145727e89df2ba6a3cbe1ff51213a0d3ce36983291265b06493363825dafc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>631/45/535</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>DEAD-box RNA Helicases - chemistry</topic><topic>DEAD-box RNA Helicases - metabolism</topic><topic>Drosophila melanogaster - chemistry</topic><topic>Drosophila melanogaster - enzymology</topic><topic>Enzymes</topic><topic>Eukaryotes</topic><topic>Gene silencing</topic><topic>Genomics</topic><topic>Giardia lamblia - chemistry</topic><topic>Giardia lamblia - enzymology</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Membrane Biology</topic><topic>Microscopy, Electron - methods</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Physiological aspects</topic><topic>Protein Conformation</topic><topic>Protein Structure</topic><topic>Protein Structure, Tertiary</topic><topic>Ribonuclease</topic><topic>Ribonuclease III - chemistry</topic><topic>Ribonuclease III - metabolism</topic><topic>Ribonucleases - chemistry</topic><topic>Ribonucleases - metabolism</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA - metabolism</topic><topic>Structure</topic><topic>Synthesis</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lau, Pick-Wei</creatorcontrib><creatorcontrib>Guiley, Keelan Z</creatorcontrib><creatorcontrib>De, Nabanita</creatorcontrib><creatorcontrib>Potter, Clinton S</creatorcontrib><creatorcontrib>Carragher, Bridget</creatorcontrib><creatorcontrib>MacRae, Ian J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature structural & molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lau, Pick-Wei</au><au>Guiley, Keelan Z</au><au>De, Nabanita</au><au>Potter, Clinton S</au><au>Carragher, Bridget</au><au>MacRae, Ian J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The molecular architecture of human Dicer</atitle><jtitle>Nature structural & molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2012-04-01</date><risdate>2012</risdate><volume>19</volume><issue>4</issue><spage>436</spage><epage>440</epage><pages>436-440</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>Current understanding of the structure of Dicer is restricted to simple forms of the enzyme from lower eukaryotes or isolated domains from higher eukaryotic Dicers. A new domain localization strategy was developed to determine the structure of human Dicer by EM, revealing the structural basis for small RNA production in eukaryotes.
Dicer is a multidomain enzyme that generates small RNAs for gene silencing in eukaryotes. Current understanding of Dicer structure is restricted to simple forms of the enzyme, whereas that of the large and complex Dicer in metazoans is unknown. Here we describe a new domain localization strategy developed to determine the structure of human Dicer by EM. A rearrangement of the nuclease core, compared to the archetypal
Giardia lamblia
Dicer, explains how metazoan Dicers generate products that are 21–23 nucleotides in length. The helicase domains form a clamp-like structure adjacent to the RNase III active site, facilitating recognition of pre-miRNA loops or translocation on long dsRNAs.
Drosophila melanogaster
Dicer-2 shows similar features, revealing that the three-dimensional architecture is conserved. These results illuminate the structural basis for small RNA production in eukaryotes and provide a versatile new tool for determining structures of large molecular machines.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>22426548</pmid><doi>10.1038/nsmb.2268</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-9993 |
ispartof | Nature structural & molecular biology, 2012-04, Vol.19 (4), p.436-440 |
issn | 1545-9993 1545-9985 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3319852 |
source | MEDLINE; Nature; SpringerLink Journals - AutoHoldings |
subjects | 631/45/535 Animals Biochemistry Biological Microscopy Biomedical and Life Sciences DEAD-box RNA Helicases - chemistry DEAD-box RNA Helicases - metabolism Drosophila melanogaster - chemistry Drosophila melanogaster - enzymology Enzymes Eukaryotes Gene silencing Genomics Giardia lamblia - chemistry Giardia lamblia - enzymology Humans Life Sciences Membrane Biology Microscopy, Electron - methods Models, Molecular Molecular biology Physiological aspects Protein Conformation Protein Structure Protein Structure, Tertiary Ribonuclease Ribonuclease III - chemistry Ribonuclease III - metabolism Ribonucleases - chemistry Ribonucleases - metabolism Ribonucleic acid RNA RNA - metabolism Structure Synthesis Translocation |
title | The molecular architecture of human Dicer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T08%3A18%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20molecular%20architecture%20of%20human%20Dicer&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Lau,%20Pick-Wei&rft.date=2012-04-01&rft.volume=19&rft.issue=4&rft.spage=436&rft.epage=440&rft.pages=436-440&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/nsmb.2268&rft_dat=%3Cgale_pubme%3EA292236743%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019512740&rft_id=info:pmid/22426548&rft_galeid=A292236743&rfr_iscdi=true |