Discovery of selective bioactive small molecules by targeting an RNA dynamic ensemble

Protein-focused lead-identification strategies may be limited in their ability to identify small molecules that bind to cellular RNAs. Docking small molecules against the structural ensemble substantially improves the docking accuracy of TAR and has led to the identification of six new TAR binders,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemical biology 2011-06, Vol.7 (8), p.553-559
Hauptverfasser: Stelzer, Andrew C, Frank, Aaron T, Kratz, Jeremy D, Swanson, Michael D, Gonzalez-Hernandez, Marta J, Lee, Janghyun, Andricioaei, Ioan, Markovitz, David M, Al-Hashimi, Hashim M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 559
container_issue 8
container_start_page 553
container_title Nature chemical biology
container_volume 7
creator Stelzer, Andrew C
Frank, Aaron T
Kratz, Jeremy D
Swanson, Michael D
Gonzalez-Hernandez, Marta J
Lee, Janghyun
Andricioaei, Ioan
Markovitz, David M
Al-Hashimi, Hashim M
description Protein-focused lead-identification strategies may be limited in their ability to identify small molecules that bind to cellular RNAs. Docking small molecules against the structural ensemble substantially improves the docking accuracy of TAR and has led to the identification of six new TAR binders, one of which inhibits HIV-1 replication. Current approaches used to identify protein-binding small molecules are not suited for identifying small molecules that can bind emerging RNA drug targets. By docking small molecules onto an RNA dynamic ensemble constructed by combining NMR spectroscopy and computational molecular dynamics, we virtually screened small molecules that target the entire structure landscape of the transactivation response element (TAR) from HIV type 1 (HIV-1). We quantitatively predict binding energies for small molecules that bind different RNA conformations and report the de novo discovery of six compounds that bind TAR with high affinity and inhibit its interaction with a Tat peptide in vitro ( K i values of 710 nM–169 μM). One compound binds HIV-1 TAR with marked selectivity and inhibits Tat-mediated activation of the HIV-1 long terminal repeat by 81% in T-cell lines and HIV replication in an HIV-1 indicator cell line (IC 50 ∼23.1 μM).
doi_str_mv 10.1038/nchembio.596
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3319144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>878278854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-bc2b1413d34442108c192f87e6522751b705e0ce504a6fccbfe18d3e6c3094533</originalsourceid><addsrcrecordid>eNptkUtrGzEUhUVJqR23u6yDyCabTCqNHqPZBEKehdBCqddCI99xxmgkR5ox-N9HwY77oCtdOB9H596D0Akll5Qw9dXbZ-ibLlyKWn5AUypEWXAu66PDLMgEHae0IoRJSdUnNClpRSRhbIrmt12yYQNxi0OLEziwQ7cBnA3Nbkq9cQ73ISujg4SbLR5MXMLQ-SU2Hv_8fo0XW2_6zmLwKWdx8Bl9bI1L8GX_ztD8_u7XzWPx9OPh2831U2EF5UPR2LKhnLIF45yXlChL67JVFUhRlpWgTUUEEAuCcCNba5sWqFowkJaRmgvGZuhq57semx4WFvwQjdPr2PUmbnUwnf5b8d2zXoaNZozWlPNscL43iOFlhDToPt8DnDMewpi0qlRZKSXeyLN_yFUYo8_b6ZoQWskqLzJDFzvIxpBShPYQhRL91pZ-b0vntjJ--mf8A_xeTwaKHZCy5JcQf3_6X8NXksyiUQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>900176741</pqid></control><display><type>article</type><title>Discovery of selective bioactive small molecules by targeting an RNA dynamic ensemble</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Stelzer, Andrew C ; Frank, Aaron T ; Kratz, Jeremy D ; Swanson, Michael D ; Gonzalez-Hernandez, Marta J ; Lee, Janghyun ; Andricioaei, Ioan ; Markovitz, David M ; Al-Hashimi, Hashim M</creator><creatorcontrib>Stelzer, Andrew C ; Frank, Aaron T ; Kratz, Jeremy D ; Swanson, Michael D ; Gonzalez-Hernandez, Marta J ; Lee, Janghyun ; Andricioaei, Ioan ; Markovitz, David M ; Al-Hashimi, Hashim M</creatorcontrib><description>Protein-focused lead-identification strategies may be limited in their ability to identify small molecules that bind to cellular RNAs. Docking small molecules against the structural ensemble substantially improves the docking accuracy of TAR and has led to the identification of six new TAR binders, one of which inhibits HIV-1 replication. Current approaches used to identify protein-binding small molecules are not suited for identifying small molecules that can bind emerging RNA drug targets. By docking small molecules onto an RNA dynamic ensemble constructed by combining NMR spectroscopy and computational molecular dynamics, we virtually screened small molecules that target the entire structure landscape of the transactivation response element (TAR) from HIV type 1 (HIV-1). We quantitatively predict binding energies for small molecules that bind different RNA conformations and report the de novo discovery of six compounds that bind TAR with high affinity and inhibit its interaction with a Tat peptide in vitro ( K i values of 710 nM–169 μM). One compound binds HIV-1 TAR with marked selectivity and inhibits Tat-mediated activation of the HIV-1 long terminal repeat by 81% in T-cell lines and HIV replication in an HIV-1 indicator cell line (IC 50 ∼23.1 μM).</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/nchembio.596</identifier><identifier>PMID: 21706033</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114/2248 ; 631/92/613 ; 692/699/255/1901 ; Biochemical Engineering ; Biochemistry ; Bioorganic Chemistry ; Cell Biology ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Computational Biology ; Drug Discovery - methods ; HIV ; HIV-1 - drug effects ; Human immunodeficiency virus ; Models, Molecular ; Molecular Structure ; Molecules ; Netilmicin - pharmacology ; Protein Binding ; Ribonucleic acid ; RNA ; RNA - metabolism ; Spectroscopy ; Virus Replication - drug effects</subject><ispartof>Nature chemical biology, 2011-06, Vol.7 (8), p.553-559</ispartof><rights>Springer Nature America, Inc. 2011</rights><rights>Copyright Nature Publishing Group Aug 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-bc2b1413d34442108c192f87e6522751b705e0ce504a6fccbfe18d3e6c3094533</citedby><cites>FETCH-LOGICAL-c514t-bc2b1413d34442108c192f87e6522751b705e0ce504a6fccbfe18d3e6c3094533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nchembio.596$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nchembio.596$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21706033$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stelzer, Andrew C</creatorcontrib><creatorcontrib>Frank, Aaron T</creatorcontrib><creatorcontrib>Kratz, Jeremy D</creatorcontrib><creatorcontrib>Swanson, Michael D</creatorcontrib><creatorcontrib>Gonzalez-Hernandez, Marta J</creatorcontrib><creatorcontrib>Lee, Janghyun</creatorcontrib><creatorcontrib>Andricioaei, Ioan</creatorcontrib><creatorcontrib>Markovitz, David M</creatorcontrib><creatorcontrib>Al-Hashimi, Hashim M</creatorcontrib><title>Discovery of selective bioactive small molecules by targeting an RNA dynamic ensemble</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>Protein-focused lead-identification strategies may be limited in their ability to identify small molecules that bind to cellular RNAs. Docking small molecules against the structural ensemble substantially improves the docking accuracy of TAR and has led to the identification of six new TAR binders, one of which inhibits HIV-1 replication. Current approaches used to identify protein-binding small molecules are not suited for identifying small molecules that can bind emerging RNA drug targets. By docking small molecules onto an RNA dynamic ensemble constructed by combining NMR spectroscopy and computational molecular dynamics, we virtually screened small molecules that target the entire structure landscape of the transactivation response element (TAR) from HIV type 1 (HIV-1). We quantitatively predict binding energies for small molecules that bind different RNA conformations and report the de novo discovery of six compounds that bind TAR with high affinity and inhibit its interaction with a Tat peptide in vitro ( K i values of 710 nM–169 μM). One compound binds HIV-1 TAR with marked selectivity and inhibits Tat-mediated activation of the HIV-1 long terminal repeat by 81% in T-cell lines and HIV replication in an HIV-1 indicator cell line (IC 50 ∼23.1 μM).</description><subject>631/114/2248</subject><subject>631/92/613</subject><subject>692/699/255/1901</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Bioorganic Chemistry</subject><subject>Cell Biology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Computational Biology</subject><subject>Drug Discovery - methods</subject><subject>HIV</subject><subject>HIV-1 - drug effects</subject><subject>Human immunodeficiency virus</subject><subject>Models, Molecular</subject><subject>Molecular Structure</subject><subject>Molecules</subject><subject>Netilmicin - pharmacology</subject><subject>Protein Binding</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA - metabolism</subject><subject>Spectroscopy</subject><subject>Virus Replication - drug effects</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkUtrGzEUhUVJqR23u6yDyCabTCqNHqPZBEKehdBCqddCI99xxmgkR5ox-N9HwY77oCtdOB9H596D0Akll5Qw9dXbZ-ibLlyKWn5AUypEWXAu66PDLMgEHae0IoRJSdUnNClpRSRhbIrmt12yYQNxi0OLEziwQ7cBnA3Nbkq9cQ73ISujg4SbLR5MXMLQ-SU2Hv_8fo0XW2_6zmLwKWdx8Bl9bI1L8GX_ztD8_u7XzWPx9OPh2831U2EF5UPR2LKhnLIF45yXlChL67JVFUhRlpWgTUUEEAuCcCNba5sWqFowkJaRmgvGZuhq57semx4WFvwQjdPr2PUmbnUwnf5b8d2zXoaNZozWlPNscL43iOFlhDToPt8DnDMewpi0qlRZKSXeyLN_yFUYo8_b6ZoQWskqLzJDFzvIxpBShPYQhRL91pZ-b0vntjJ--mf8A_xeTwaKHZCy5JcQf3_6X8NXksyiUQ</recordid><startdate>20110626</startdate><enddate>20110626</enddate><creator>Stelzer, Andrew C</creator><creator>Frank, Aaron T</creator><creator>Kratz, Jeremy D</creator><creator>Swanson, Michael D</creator><creator>Gonzalez-Hernandez, Marta J</creator><creator>Lee, Janghyun</creator><creator>Andricioaei, Ioan</creator><creator>Markovitz, David M</creator><creator>Al-Hashimi, Hashim M</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110626</creationdate><title>Discovery of selective bioactive small molecules by targeting an RNA dynamic ensemble</title><author>Stelzer, Andrew C ; Frank, Aaron T ; Kratz, Jeremy D ; Swanson, Michael D ; Gonzalez-Hernandez, Marta J ; Lee, Janghyun ; Andricioaei, Ioan ; Markovitz, David M ; Al-Hashimi, Hashim M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-bc2b1413d34442108c192f87e6522751b705e0ce504a6fccbfe18d3e6c3094533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>631/114/2248</topic><topic>631/92/613</topic><topic>692/699/255/1901</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Bioorganic Chemistry</topic><topic>Cell Biology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Computational Biology</topic><topic>Drug Discovery - methods</topic><topic>HIV</topic><topic>HIV-1 - drug effects</topic><topic>Human immunodeficiency virus</topic><topic>Models, Molecular</topic><topic>Molecular Structure</topic><topic>Molecules</topic><topic>Netilmicin - pharmacology</topic><topic>Protein Binding</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA - metabolism</topic><topic>Spectroscopy</topic><topic>Virus Replication - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stelzer, Andrew C</creatorcontrib><creatorcontrib>Frank, Aaron T</creatorcontrib><creatorcontrib>Kratz, Jeremy D</creatorcontrib><creatorcontrib>Swanson, Michael D</creatorcontrib><creatorcontrib>Gonzalez-Hernandez, Marta J</creatorcontrib><creatorcontrib>Lee, Janghyun</creatorcontrib><creatorcontrib>Andricioaei, Ioan</creatorcontrib><creatorcontrib>Markovitz, David M</creatorcontrib><creatorcontrib>Al-Hashimi, Hashim M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stelzer, Andrew C</au><au>Frank, Aaron T</au><au>Kratz, Jeremy D</au><au>Swanson, Michael D</au><au>Gonzalez-Hernandez, Marta J</au><au>Lee, Janghyun</au><au>Andricioaei, Ioan</au><au>Markovitz, David M</au><au>Al-Hashimi, Hashim M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovery of selective bioactive small molecules by targeting an RNA dynamic ensemble</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2011-06-26</date><risdate>2011</risdate><volume>7</volume><issue>8</issue><spage>553</spage><epage>559</epage><pages>553-559</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>Protein-focused lead-identification strategies may be limited in their ability to identify small molecules that bind to cellular RNAs. Docking small molecules against the structural ensemble substantially improves the docking accuracy of TAR and has led to the identification of six new TAR binders, one of which inhibits HIV-1 replication. Current approaches used to identify protein-binding small molecules are not suited for identifying small molecules that can bind emerging RNA drug targets. By docking small molecules onto an RNA dynamic ensemble constructed by combining NMR spectroscopy and computational molecular dynamics, we virtually screened small molecules that target the entire structure landscape of the transactivation response element (TAR) from HIV type 1 (HIV-1). We quantitatively predict binding energies for small molecules that bind different RNA conformations and report the de novo discovery of six compounds that bind TAR with high affinity and inhibit its interaction with a Tat peptide in vitro ( K i values of 710 nM–169 μM). One compound binds HIV-1 TAR with marked selectivity and inhibits Tat-mediated activation of the HIV-1 long terminal repeat by 81% in T-cell lines and HIV replication in an HIV-1 indicator cell line (IC 50 ∼23.1 μM).</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>21706033</pmid><doi>10.1038/nchembio.596</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-4450
ispartof Nature chemical biology, 2011-06, Vol.7 (8), p.553-559
issn 1552-4450
1552-4469
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3319144
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 631/114/2248
631/92/613
692/699/255/1901
Biochemical Engineering
Biochemistry
Bioorganic Chemistry
Cell Biology
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Computational Biology
Drug Discovery - methods
HIV
HIV-1 - drug effects
Human immunodeficiency virus
Models, Molecular
Molecular Structure
Molecules
Netilmicin - pharmacology
Protein Binding
Ribonucleic acid
RNA
RNA - metabolism
Spectroscopy
Virus Replication - drug effects
title Discovery of selective bioactive small molecules by targeting an RNA dynamic ensemble
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T11%3A06%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovery%20of%20selective%20bioactive%20small%20molecules%20by%20targeting%20an%20RNA%20dynamic%20ensemble&rft.jtitle=Nature%20chemical%20biology&rft.au=Stelzer,%20Andrew%20C&rft.date=2011-06-26&rft.volume=7&rft.issue=8&rft.spage=553&rft.epage=559&rft.pages=553-559&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/nchembio.596&rft_dat=%3Cproquest_pubme%3E878278854%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=900176741&rft_id=info:pmid/21706033&rfr_iscdi=true