BRCA1-directed, enhanced and aberrant homologous recombination: Mechanism and potential treatment strategies
Despite intense studies, questions still remain regarding the molecular mechanisms leading to the development of hereditary breast and ovarian cancers. Research focused on elucidating the role of the breast cancer susceptibility gene 1 (BRCA1) in the DNA damage response may be of the most critical i...
Gespeichert in:
Veröffentlicht in: | Cell cycle (Georgetown, Tex.) Tex.), 2012-02, Vol.11 (4), p.687-694 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 694 |
---|---|
container_issue | 4 |
container_start_page | 687 |
container_title | Cell cycle (Georgetown, Tex.) |
container_volume | 11 |
creator | Dever, Seth M. White, E. Railey Hartman, Matthew C.T. Valerie, Kristoffer |
description | Despite intense studies, questions still remain regarding the molecular mechanisms leading to the development of hereditary breast and ovarian cancers. Research focused on elucidating the role of the breast cancer susceptibility gene 1 (BRCA1) in the DNA damage response may be of the most critical importance to understanding these processes. The BRCA1 protein has an N-terminal RING domain possessing E3 ubiquitinligase activity and a C-terminal BRCT domain involved in binding specific phosphoproteins. These domains are involved directly or indirectly in DNA double-strand break (DSB) repair. As the two terminal domains of BRCA1 represent two separate entities, understanding how these domains communicate and are functionally altered in regards to DSB repair is critical for understanding the development of BRCA1-related breast and ovarian cancers and for developing novel therapeutics. Herein, we review recent findings of how altered functions of these domains might lead to cancer through a mechanism of increased aberrant homologous recombination and possible implications for the development of BRCA1 inhibitors. |
doi_str_mv | 10.4161/cc.11.4.19212 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3318103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>925717957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-7f0ed149299cde88522e0ae5e431e537bd06027a32b1e563e98186f226b386d93</originalsourceid><addsrcrecordid>eNqFkd1LHDEUxUNR6kf72FfZN186u7nJfCQvgk61FQShtM8hk9xxU2aSNZm1-N83uutSQfAhJCG_e-65J4R8ATovoYaFMXOAeTkHyYB9IIdQVVCUlFZ7T2cuihIoHJCjlP5QykQj4SM5YIzTWsrmkJxd_GzPobAuopnQfp2hX2pv0M60z6vDGLWfZsswhiHchXWaZTCMnfN6csF_Ivu9HhJ-3u7H5PfV5a_2R3Fz-_26Pb8pDC_FVDQ9RQulZFIai0JUjCHVWGHJASvedJbWlDWasy7fa45SgKh7xuqOi9pKfkzONrqrdTeiNeinqAe1im7U8VEF7dTrF--W6i48KM5BAOVZ4HQrEMP9GtOkRpcMDoP2mKdSklUNNLJqMllsSBNDShH7XReg6ilyZYwCUKV6jjzzJ_9b29EvGWdgsQFyL4upcyEZhznjHfoNHzC27bPoyva5gr5TkS3oODkz4M6F2JQ434c46r8hDlZN-nEIsc9faFxS_O0B_gFzprIr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925717957</pqid></control><display><type>article</type><title>BRCA1-directed, enhanced and aberrant homologous recombination: Mechanism and potential treatment strategies</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Dever, Seth M. ; White, E. Railey ; Hartman, Matthew C.T. ; Valerie, Kristoffer</creator><creatorcontrib>Dever, Seth M. ; White, E. Railey ; Hartman, Matthew C.T. ; Valerie, Kristoffer</creatorcontrib><description>Despite intense studies, questions still remain regarding the molecular mechanisms leading to the development of hereditary breast and ovarian cancers. Research focused on elucidating the role of the breast cancer susceptibility gene 1 (BRCA1) in the DNA damage response may be of the most critical importance to understanding these processes. The BRCA1 protein has an N-terminal RING domain possessing E3 ubiquitinligase activity and a C-terminal BRCT domain involved in binding specific phosphoproteins. These domains are involved directly or indirectly in DNA double-strand break (DSB) repair. As the two terminal domains of BRCA1 represent two separate entities, understanding how these domains communicate and are functionally altered in regards to DSB repair is critical for understanding the development of BRCA1-related breast and ovarian cancers and for developing novel therapeutics. Herein, we review recent findings of how altered functions of these domains might lead to cancer through a mechanism of increased aberrant homologous recombination and possible implications for the development of BRCA1 inhibitors.</description><identifier>ISSN: 1538-4101</identifier><identifier>EISSN: 1551-4005</identifier><identifier>DOI: 10.4161/cc.11.4.19212</identifier><identifier>PMID: 22306997</identifier><language>eng</language><publisher>United States: Taylor & Francis</publisher><subject>Animals ; Binding ; Biology ; Bioscience ; BRCA1 Protein - genetics ; BRCA1 Protein - metabolism ; Breast Neoplasms - genetics ; Breast Neoplasms - metabolism ; Calcium ; Cancer ; Cell ; Cycle ; DNA Damage - genetics ; DNA Damage - physiology ; DNA Repair - genetics ; DNA Repair - physiology ; Female ; Humans ; Landes ; Models, Biological ; Organogenesis ; Ovarian Neoplasms - genetics ; Ovarian Neoplasms - metabolism ; Protein Structure, Tertiary - genetics ; Protein Structure, Tertiary - physiology ; Proteins</subject><ispartof>Cell cycle (Georgetown, Tex.), 2012-02, Vol.11 (4), p.687-694</ispartof><rights>Copyright © 2012 Landes Bioscience 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c348t-7f0ed149299cde88522e0ae5e431e537bd06027a32b1e563e98186f226b386d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3318103/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3318103/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22306997$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dever, Seth M.</creatorcontrib><creatorcontrib>White, E. Railey</creatorcontrib><creatorcontrib>Hartman, Matthew C.T.</creatorcontrib><creatorcontrib>Valerie, Kristoffer</creatorcontrib><title>BRCA1-directed, enhanced and aberrant homologous recombination: Mechanism and potential treatment strategies</title><title>Cell cycle (Georgetown, Tex.)</title><addtitle>Cell Cycle</addtitle><description>Despite intense studies, questions still remain regarding the molecular mechanisms leading to the development of hereditary breast and ovarian cancers. Research focused on elucidating the role of the breast cancer susceptibility gene 1 (BRCA1) in the DNA damage response may be of the most critical importance to understanding these processes. The BRCA1 protein has an N-terminal RING domain possessing E3 ubiquitinligase activity and a C-terminal BRCT domain involved in binding specific phosphoproteins. These domains are involved directly or indirectly in DNA double-strand break (DSB) repair. As the two terminal domains of BRCA1 represent two separate entities, understanding how these domains communicate and are functionally altered in regards to DSB repair is critical for understanding the development of BRCA1-related breast and ovarian cancers and for developing novel therapeutics. Herein, we review recent findings of how altered functions of these domains might lead to cancer through a mechanism of increased aberrant homologous recombination and possible implications for the development of BRCA1 inhibitors.</description><subject>Animals</subject><subject>Binding</subject><subject>Biology</subject><subject>Bioscience</subject><subject>BRCA1 Protein - genetics</subject><subject>BRCA1 Protein - metabolism</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - metabolism</subject><subject>Calcium</subject><subject>Cancer</subject><subject>Cell</subject><subject>Cycle</subject><subject>DNA Damage - genetics</subject><subject>DNA Damage - physiology</subject><subject>DNA Repair - genetics</subject><subject>DNA Repair - physiology</subject><subject>Female</subject><subject>Humans</subject><subject>Landes</subject><subject>Models, Biological</subject><subject>Organogenesis</subject><subject>Ovarian Neoplasms - genetics</subject><subject>Ovarian Neoplasms - metabolism</subject><subject>Protein Structure, Tertiary - genetics</subject><subject>Protein Structure, Tertiary - physiology</subject><subject>Proteins</subject><issn>1538-4101</issn><issn>1551-4005</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkd1LHDEUxUNR6kf72FfZN186u7nJfCQvgk61FQShtM8hk9xxU2aSNZm1-N83uutSQfAhJCG_e-65J4R8ATovoYaFMXOAeTkHyYB9IIdQVVCUlFZ7T2cuihIoHJCjlP5QykQj4SM5YIzTWsrmkJxd_GzPobAuopnQfp2hX2pv0M60z6vDGLWfZsswhiHchXWaZTCMnfN6csF_Ivu9HhJ-3u7H5PfV5a_2R3Fz-_26Pb8pDC_FVDQ9RQulZFIai0JUjCHVWGHJASvedJbWlDWasy7fa45SgKh7xuqOi9pKfkzONrqrdTeiNeinqAe1im7U8VEF7dTrF--W6i48KM5BAOVZ4HQrEMP9GtOkRpcMDoP2mKdSklUNNLJqMllsSBNDShH7XReg6ilyZYwCUKV6jjzzJ_9b29EvGWdgsQFyL4upcyEZhznjHfoNHzC27bPoyva5gr5TkS3oODkz4M6F2JQ434c46r8hDlZN-nEIsc9faFxS_O0B_gFzprIr</recordid><startdate>20120215</startdate><enddate>20120215</enddate><creator>Dever, Seth M.</creator><creator>White, E. Railey</creator><creator>Hartman, Matthew C.T.</creator><creator>Valerie, Kristoffer</creator><general>Taylor & Francis</general><general>Landes Bioscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120215</creationdate><title>BRCA1-directed, enhanced and aberrant homologous recombination</title><author>Dever, Seth M. ; White, E. Railey ; Hartman, Matthew C.T. ; Valerie, Kristoffer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-7f0ed149299cde88522e0ae5e431e537bd06027a32b1e563e98186f226b386d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Binding</topic><topic>Biology</topic><topic>Bioscience</topic><topic>BRCA1 Protein - genetics</topic><topic>BRCA1 Protein - metabolism</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - metabolism</topic><topic>Calcium</topic><topic>Cancer</topic><topic>Cell</topic><topic>Cycle</topic><topic>DNA Damage - genetics</topic><topic>DNA Damage - physiology</topic><topic>DNA Repair - genetics</topic><topic>DNA Repair - physiology</topic><topic>Female</topic><topic>Humans</topic><topic>Landes</topic><topic>Models, Biological</topic><topic>Organogenesis</topic><topic>Ovarian Neoplasms - genetics</topic><topic>Ovarian Neoplasms - metabolism</topic><topic>Protein Structure, Tertiary - genetics</topic><topic>Protein Structure, Tertiary - physiology</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dever, Seth M.</creatorcontrib><creatorcontrib>White, E. Railey</creatorcontrib><creatorcontrib>Hartman, Matthew C.T.</creatorcontrib><creatorcontrib>Valerie, Kristoffer</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell cycle (Georgetown, Tex.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dever, Seth M.</au><au>White, E. Railey</au><au>Hartman, Matthew C.T.</au><au>Valerie, Kristoffer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BRCA1-directed, enhanced and aberrant homologous recombination: Mechanism and potential treatment strategies</atitle><jtitle>Cell cycle (Georgetown, Tex.)</jtitle><addtitle>Cell Cycle</addtitle><date>2012-02-15</date><risdate>2012</risdate><volume>11</volume><issue>4</issue><spage>687</spage><epage>694</epage><pages>687-694</pages><issn>1538-4101</issn><eissn>1551-4005</eissn><abstract>Despite intense studies, questions still remain regarding the molecular mechanisms leading to the development of hereditary breast and ovarian cancers. Research focused on elucidating the role of the breast cancer susceptibility gene 1 (BRCA1) in the DNA damage response may be of the most critical importance to understanding these processes. The BRCA1 protein has an N-terminal RING domain possessing E3 ubiquitinligase activity and a C-terminal BRCT domain involved in binding specific phosphoproteins. These domains are involved directly or indirectly in DNA double-strand break (DSB) repair. As the two terminal domains of BRCA1 represent two separate entities, understanding how these domains communicate and are functionally altered in regards to DSB repair is critical for understanding the development of BRCA1-related breast and ovarian cancers and for developing novel therapeutics. Herein, we review recent findings of how altered functions of these domains might lead to cancer through a mechanism of increased aberrant homologous recombination and possible implications for the development of BRCA1 inhibitors.</abstract><cop>United States</cop><pub>Taylor & Francis</pub><pmid>22306997</pmid><doi>10.4161/cc.11.4.19212</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1538-4101 |
ispartof | Cell cycle (Georgetown, Tex.), 2012-02, Vol.11 (4), p.687-694 |
issn | 1538-4101 1551-4005 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3318103 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Animals Binding Biology Bioscience BRCA1 Protein - genetics BRCA1 Protein - metabolism Breast Neoplasms - genetics Breast Neoplasms - metabolism Calcium Cancer Cell Cycle DNA Damage - genetics DNA Damage - physiology DNA Repair - genetics DNA Repair - physiology Female Humans Landes Models, Biological Organogenesis Ovarian Neoplasms - genetics Ovarian Neoplasms - metabolism Protein Structure, Tertiary - genetics Protein Structure, Tertiary - physiology Proteins |
title | BRCA1-directed, enhanced and aberrant homologous recombination: Mechanism and potential treatment strategies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A03%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BRCA1-directed,%20enhanced%20and%20aberrant%20homologous%20recombination:%20Mechanism%20and%20potential%20treatment%20strategies&rft.jtitle=Cell%20cycle%20(Georgetown,%20Tex.)&rft.au=Dever,%20Seth%20M.&rft.date=2012-02-15&rft.volume=11&rft.issue=4&rft.spage=687&rft.epage=694&rft.pages=687-694&rft.issn=1538-4101&rft.eissn=1551-4005&rft_id=info:doi/10.4161/cc.11.4.19212&rft_dat=%3Cproquest_pubme%3E925717957%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=925717957&rft_id=info:pmid/22306997&rfr_iscdi=true |