BRCA1-directed, enhanced and aberrant homologous recombination: Mechanism and potential treatment strategies

Despite intense studies, questions still remain regarding the molecular mechanisms leading to the development of hereditary breast and ovarian cancers. Research focused on elucidating the role of the breast cancer susceptibility gene 1 (BRCA1) in the DNA damage response may be of the most critical i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell cycle (Georgetown, Tex.) Tex.), 2012-02, Vol.11 (4), p.687-694
Hauptverfasser: Dever, Seth M., White, E. Railey, Hartman, Matthew C.T., Valerie, Kristoffer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 694
container_issue 4
container_start_page 687
container_title Cell cycle (Georgetown, Tex.)
container_volume 11
creator Dever, Seth M.
White, E. Railey
Hartman, Matthew C.T.
Valerie, Kristoffer
description Despite intense studies, questions still remain regarding the molecular mechanisms leading to the development of hereditary breast and ovarian cancers. Research focused on elucidating the role of the breast cancer susceptibility gene 1 (BRCA1) in the DNA damage response may be of the most critical importance to understanding these processes. The BRCA1 protein has an N-terminal RING domain possessing E3 ubiquitinligase activity and a C-terminal BRCT domain involved in binding specific phosphoproteins. These domains are involved directly or indirectly in DNA double-strand break (DSB) repair. As the two terminal domains of BRCA1 represent two separate entities, understanding how these domains communicate and are functionally altered in regards to DSB repair is critical for understanding the development of BRCA1-related breast and ovarian cancers and for developing novel therapeutics. Herein, we review recent findings of how altered functions of these domains might lead to cancer through a mechanism of increased aberrant homologous recombination and possible implications for the development of BRCA1 inhibitors.
doi_str_mv 10.4161/cc.11.4.19212
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3318103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>925717957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-7f0ed149299cde88522e0ae5e431e537bd06027a32b1e563e98186f226b386d93</originalsourceid><addsrcrecordid>eNqFkd1LHDEUxUNR6kf72FfZN186u7nJfCQvgk61FQShtM8hk9xxU2aSNZm1-N83uutSQfAhJCG_e-65J4R8ATovoYaFMXOAeTkHyYB9IIdQVVCUlFZ7T2cuihIoHJCjlP5QykQj4SM5YIzTWsrmkJxd_GzPobAuopnQfp2hX2pv0M60z6vDGLWfZsswhiHchXWaZTCMnfN6csF_Ivu9HhJ-3u7H5PfV5a_2R3Fz-_26Pb8pDC_FVDQ9RQulZFIai0JUjCHVWGHJASvedJbWlDWasy7fa45SgKh7xuqOi9pKfkzONrqrdTeiNeinqAe1im7U8VEF7dTrF--W6i48KM5BAOVZ4HQrEMP9GtOkRpcMDoP2mKdSklUNNLJqMllsSBNDShH7XReg6ilyZYwCUKV6jjzzJ_9b29EvGWdgsQFyL4upcyEZhznjHfoNHzC27bPoyva5gr5TkS3oODkz4M6F2JQ434c46r8hDlZN-nEIsc9faFxS_O0B_gFzprIr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925717957</pqid></control><display><type>article</type><title>BRCA1-directed, enhanced and aberrant homologous recombination: Mechanism and potential treatment strategies</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Dever, Seth M. ; White, E. Railey ; Hartman, Matthew C.T. ; Valerie, Kristoffer</creator><creatorcontrib>Dever, Seth M. ; White, E. Railey ; Hartman, Matthew C.T. ; Valerie, Kristoffer</creatorcontrib><description>Despite intense studies, questions still remain regarding the molecular mechanisms leading to the development of hereditary breast and ovarian cancers. Research focused on elucidating the role of the breast cancer susceptibility gene 1 (BRCA1) in the DNA damage response may be of the most critical importance to understanding these processes. The BRCA1 protein has an N-terminal RING domain possessing E3 ubiquitinligase activity and a C-terminal BRCT domain involved in binding specific phosphoproteins. These domains are involved directly or indirectly in DNA double-strand break (DSB) repair. As the two terminal domains of BRCA1 represent two separate entities, understanding how these domains communicate and are functionally altered in regards to DSB repair is critical for understanding the development of BRCA1-related breast and ovarian cancers and for developing novel therapeutics. Herein, we review recent findings of how altered functions of these domains might lead to cancer through a mechanism of increased aberrant homologous recombination and possible implications for the development of BRCA1 inhibitors.</description><identifier>ISSN: 1538-4101</identifier><identifier>EISSN: 1551-4005</identifier><identifier>DOI: 10.4161/cc.11.4.19212</identifier><identifier>PMID: 22306997</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>Animals ; Binding ; Biology ; Bioscience ; BRCA1 Protein - genetics ; BRCA1 Protein - metabolism ; Breast Neoplasms - genetics ; Breast Neoplasms - metabolism ; Calcium ; Cancer ; Cell ; Cycle ; DNA Damage - genetics ; DNA Damage - physiology ; DNA Repair - genetics ; DNA Repair - physiology ; Female ; Humans ; Landes ; Models, Biological ; Organogenesis ; Ovarian Neoplasms - genetics ; Ovarian Neoplasms - metabolism ; Protein Structure, Tertiary - genetics ; Protein Structure, Tertiary - physiology ; Proteins</subject><ispartof>Cell cycle (Georgetown, Tex.), 2012-02, Vol.11 (4), p.687-694</ispartof><rights>Copyright © 2012 Landes Bioscience 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c348t-7f0ed149299cde88522e0ae5e431e537bd06027a32b1e563e98186f226b386d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3318103/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3318103/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22306997$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dever, Seth M.</creatorcontrib><creatorcontrib>White, E. Railey</creatorcontrib><creatorcontrib>Hartman, Matthew C.T.</creatorcontrib><creatorcontrib>Valerie, Kristoffer</creatorcontrib><title>BRCA1-directed, enhanced and aberrant homologous recombination: Mechanism and potential treatment strategies</title><title>Cell cycle (Georgetown, Tex.)</title><addtitle>Cell Cycle</addtitle><description>Despite intense studies, questions still remain regarding the molecular mechanisms leading to the development of hereditary breast and ovarian cancers. Research focused on elucidating the role of the breast cancer susceptibility gene 1 (BRCA1) in the DNA damage response may be of the most critical importance to understanding these processes. The BRCA1 protein has an N-terminal RING domain possessing E3 ubiquitinligase activity and a C-terminal BRCT domain involved in binding specific phosphoproteins. These domains are involved directly or indirectly in DNA double-strand break (DSB) repair. As the two terminal domains of BRCA1 represent two separate entities, understanding how these domains communicate and are functionally altered in regards to DSB repair is critical for understanding the development of BRCA1-related breast and ovarian cancers and for developing novel therapeutics. Herein, we review recent findings of how altered functions of these domains might lead to cancer through a mechanism of increased aberrant homologous recombination and possible implications for the development of BRCA1 inhibitors.</description><subject>Animals</subject><subject>Binding</subject><subject>Biology</subject><subject>Bioscience</subject><subject>BRCA1 Protein - genetics</subject><subject>BRCA1 Protein - metabolism</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - metabolism</subject><subject>Calcium</subject><subject>Cancer</subject><subject>Cell</subject><subject>Cycle</subject><subject>DNA Damage - genetics</subject><subject>DNA Damage - physiology</subject><subject>DNA Repair - genetics</subject><subject>DNA Repair - physiology</subject><subject>Female</subject><subject>Humans</subject><subject>Landes</subject><subject>Models, Biological</subject><subject>Organogenesis</subject><subject>Ovarian Neoplasms - genetics</subject><subject>Ovarian Neoplasms - metabolism</subject><subject>Protein Structure, Tertiary - genetics</subject><subject>Protein Structure, Tertiary - physiology</subject><subject>Proteins</subject><issn>1538-4101</issn><issn>1551-4005</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkd1LHDEUxUNR6kf72FfZN186u7nJfCQvgk61FQShtM8hk9xxU2aSNZm1-N83uutSQfAhJCG_e-65J4R8ATovoYaFMXOAeTkHyYB9IIdQVVCUlFZ7T2cuihIoHJCjlP5QykQj4SM5YIzTWsrmkJxd_GzPobAuopnQfp2hX2pv0M60z6vDGLWfZsswhiHchXWaZTCMnfN6csF_Ivu9HhJ-3u7H5PfV5a_2R3Fz-_26Pb8pDC_FVDQ9RQulZFIai0JUjCHVWGHJASvedJbWlDWasy7fa45SgKh7xuqOi9pKfkzONrqrdTeiNeinqAe1im7U8VEF7dTrF--W6i48KM5BAOVZ4HQrEMP9GtOkRpcMDoP2mKdSklUNNLJqMllsSBNDShH7XReg6ilyZYwCUKV6jjzzJ_9b29EvGWdgsQFyL4upcyEZhznjHfoNHzC27bPoyva5gr5TkS3oODkz4M6F2JQ434c46r8hDlZN-nEIsc9faFxS_O0B_gFzprIr</recordid><startdate>20120215</startdate><enddate>20120215</enddate><creator>Dever, Seth M.</creator><creator>White, E. Railey</creator><creator>Hartman, Matthew C.T.</creator><creator>Valerie, Kristoffer</creator><general>Taylor &amp; Francis</general><general>Landes Bioscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120215</creationdate><title>BRCA1-directed, enhanced and aberrant homologous recombination</title><author>Dever, Seth M. ; White, E. Railey ; Hartman, Matthew C.T. ; Valerie, Kristoffer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-7f0ed149299cde88522e0ae5e431e537bd06027a32b1e563e98186f226b386d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Binding</topic><topic>Biology</topic><topic>Bioscience</topic><topic>BRCA1 Protein - genetics</topic><topic>BRCA1 Protein - metabolism</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - metabolism</topic><topic>Calcium</topic><topic>Cancer</topic><topic>Cell</topic><topic>Cycle</topic><topic>DNA Damage - genetics</topic><topic>DNA Damage - physiology</topic><topic>DNA Repair - genetics</topic><topic>DNA Repair - physiology</topic><topic>Female</topic><topic>Humans</topic><topic>Landes</topic><topic>Models, Biological</topic><topic>Organogenesis</topic><topic>Ovarian Neoplasms - genetics</topic><topic>Ovarian Neoplasms - metabolism</topic><topic>Protein Structure, Tertiary - genetics</topic><topic>Protein Structure, Tertiary - physiology</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dever, Seth M.</creatorcontrib><creatorcontrib>White, E. Railey</creatorcontrib><creatorcontrib>Hartman, Matthew C.T.</creatorcontrib><creatorcontrib>Valerie, Kristoffer</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell cycle (Georgetown, Tex.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dever, Seth M.</au><au>White, E. Railey</au><au>Hartman, Matthew C.T.</au><au>Valerie, Kristoffer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BRCA1-directed, enhanced and aberrant homologous recombination: Mechanism and potential treatment strategies</atitle><jtitle>Cell cycle (Georgetown, Tex.)</jtitle><addtitle>Cell Cycle</addtitle><date>2012-02-15</date><risdate>2012</risdate><volume>11</volume><issue>4</issue><spage>687</spage><epage>694</epage><pages>687-694</pages><issn>1538-4101</issn><eissn>1551-4005</eissn><abstract>Despite intense studies, questions still remain regarding the molecular mechanisms leading to the development of hereditary breast and ovarian cancers. Research focused on elucidating the role of the breast cancer susceptibility gene 1 (BRCA1) in the DNA damage response may be of the most critical importance to understanding these processes. The BRCA1 protein has an N-terminal RING domain possessing E3 ubiquitinligase activity and a C-terminal BRCT domain involved in binding specific phosphoproteins. These domains are involved directly or indirectly in DNA double-strand break (DSB) repair. As the two terminal domains of BRCA1 represent two separate entities, understanding how these domains communicate and are functionally altered in regards to DSB repair is critical for understanding the development of BRCA1-related breast and ovarian cancers and for developing novel therapeutics. Herein, we review recent findings of how altered functions of these domains might lead to cancer through a mechanism of increased aberrant homologous recombination and possible implications for the development of BRCA1 inhibitors.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>22306997</pmid><doi>10.4161/cc.11.4.19212</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1538-4101
ispartof Cell cycle (Georgetown, Tex.), 2012-02, Vol.11 (4), p.687-694
issn 1538-4101
1551-4005
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3318103
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
Binding
Biology
Bioscience
BRCA1 Protein - genetics
BRCA1 Protein - metabolism
Breast Neoplasms - genetics
Breast Neoplasms - metabolism
Calcium
Cancer
Cell
Cycle
DNA Damage - genetics
DNA Damage - physiology
DNA Repair - genetics
DNA Repair - physiology
Female
Humans
Landes
Models, Biological
Organogenesis
Ovarian Neoplasms - genetics
Ovarian Neoplasms - metabolism
Protein Structure, Tertiary - genetics
Protein Structure, Tertiary - physiology
Proteins
title BRCA1-directed, enhanced and aberrant homologous recombination: Mechanism and potential treatment strategies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A03%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BRCA1-directed,%20enhanced%20and%20aberrant%20homologous%20recombination:%20Mechanism%20and%20potential%20treatment%20strategies&rft.jtitle=Cell%20cycle%20(Georgetown,%20Tex.)&rft.au=Dever,%20Seth%20M.&rft.date=2012-02-15&rft.volume=11&rft.issue=4&rft.spage=687&rft.epage=694&rft.pages=687-694&rft.issn=1538-4101&rft.eissn=1551-4005&rft_id=info:doi/10.4161/cc.11.4.19212&rft_dat=%3Cproquest_pubme%3E925717957%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=925717957&rft_id=info:pmid/22306997&rfr_iscdi=true