Genetic analysis of complex interactions among components of the mitochondrial import motor and translocon in Saccharomyces cerevisiae
A highly conserved, Hsp70-based, import motor, which is associated with the translocase on the matrix side of the inner mitochondrial membrane, is critical for protein translocation into the matrix. Hsp70 is tethered to the translocon via interaction with Tim44. Pam18, the J-protein co-chaperone, an...
Gespeichert in:
Veröffentlicht in: | Genetics (Austin) 2012-04, Vol.190 (4), p.1341-1353 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1353 |
---|---|
container_issue | 4 |
container_start_page | 1341 |
container_title | Genetics (Austin) |
container_volume | 190 |
creator | Schilke, Brenda A Hayashi, Masaya Craig, Elizabeth A |
description | A highly conserved, Hsp70-based, import motor, which is associated with the translocase on the matrix side of the inner mitochondrial membrane, is critical for protein translocation into the matrix. Hsp70 is tethered to the translocon via interaction with Tim44. Pam18, the J-protein co-chaperone, and Pam16, a structurally related protein with which Pam18 forms a heterodimer, are also critical components of the motor. Their N termini are important for the heterodimer's translocon association, with Pam18's and Pam16's N termini interacting in the intermembrane space and the matrix, respectively. Here, using the model organism Saccharomyces cerevisiae, we report the identification of an N-terminal segment of Tim44, important for association of Pam16 with the translocon. We also report that higher amounts of Pam17, a nonessential motor component, are found associated with the translocon in both PAM16 and TIM44 mutants that affect their interaction with one another. These TIM44 and PAM16 mutations are also synthetically lethal with a deletion of PAM17. In contrast, a deletion of PAM17 has little, or no genetic interaction with a PAM18 mutation that affects translocon association of the Pam16:Pam18 heterodimer, suggesting a second role for the Pam16:Tim44 interaction. A similar pattern of genetic interactions and enhanced Pam17 translocon association was observed in the absence of the C terminus of Tim17, a core component of the translocon. We suggest the Pam16:Tim44 interaction may play two roles: (1) tethering the Pam16:Pam18 heterodimer to the translocon and (2) positioning the import motor for efficient engagement with the translocating polypeptide along with Tim17 and Pam17. |
doi_str_mv | 10.1534/genetics.112.138743 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3316647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2647807311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-91c4eb70d25d07c4db542091776e6385144d5a72bdd4b8b70157141c78459ca43</originalsourceid><addsrcrecordid>eNpVkV1rFDEUhoMotrb-AkECXu-ak4_JzI0gRVuh0Iva65BJsrspMzlrki3dP-DvNu22pV4l8L7nycdDyCdgS1BCfl2HFGp0ZQnAlyB6LcUbcgyDFAveCXj7an9EPpRyyxjrBtW_J0ec86HXTB2Tv-cHCrXJTvsSC8UVdThvp3BPY6ohW1cjpkLtjGn9GGEKqT4W6ybQOVZ0G0w-RzvR2OJc6YwVc2N6WrNNZUKHqeHotXVuYzPOexcKdSGHu1iiDafk3cpOJXx8Wk_Izc8fv88uFpdX57_Ovl8unBz6uhjAyTBq5rnyTDvpRyU5G0DrLnSiVyClV1bz0Xs59q0ISoMEp3upBmelOCHfDtztbpyDd-0h2U5mm-Ns896gjeb_JMWNWeOdEQK6TuoG-PIEyPhnF0o1t7jL7e-KAQZMaAmMt5Y4tFzGUnJYvZwAzDzIM8_yTJNnDvLa1OfXl3uZebYl_gHxWZu5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010374102</pqid></control><display><type>article</type><title>Genetic analysis of complex interactions among components of the mitochondrial import motor and translocon in Saccharomyces cerevisiae</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Schilke, Brenda A ; Hayashi, Masaya ; Craig, Elizabeth A</creator><creatorcontrib>Schilke, Brenda A ; Hayashi, Masaya ; Craig, Elizabeth A</creatorcontrib><description>A highly conserved, Hsp70-based, import motor, which is associated with the translocase on the matrix side of the inner mitochondrial membrane, is critical for protein translocation into the matrix. Hsp70 is tethered to the translocon via interaction with Tim44. Pam18, the J-protein co-chaperone, and Pam16, a structurally related protein with which Pam18 forms a heterodimer, are also critical components of the motor. Their N termini are important for the heterodimer's translocon association, with Pam18's and Pam16's N termini interacting in the intermembrane space and the matrix, respectively. Here, using the model organism Saccharomyces cerevisiae, we report the identification of an N-terminal segment of Tim44, important for association of Pam16 with the translocon. We also report that higher amounts of Pam17, a nonessential motor component, are found associated with the translocon in both PAM16 and TIM44 mutants that affect their interaction with one another. These TIM44 and PAM16 mutations are also synthetically lethal with a deletion of PAM17. In contrast, a deletion of PAM17 has little, or no genetic interaction with a PAM18 mutation that affects translocon association of the Pam16:Pam18 heterodimer, suggesting a second role for the Pam16:Tim44 interaction. A similar pattern of genetic interactions and enhanced Pam17 translocon association was observed in the absence of the C terminus of Tim17, a core component of the translocon. We suggest the Pam16:Tim44 interaction may play two roles: (1) tethering the Pam16:Pam18 heterodimer to the translocon and (2) positioning the import motor for efficient engagement with the translocating polypeptide along with Tim17 and Pam17.</description><identifier>ISSN: 1943-2631</identifier><identifier>ISSN: 0016-6731</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1534/genetics.112.138743</identifier><identifier>PMID: 22298705</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Society of America</publisher><subject>Fungi ; Gene Deletion ; Gene Expression Regulation, Fungal ; Genes, Fungal ; Genetics ; HSP70 Heat-Shock Proteins - genetics ; HSP70 Heat-Shock Proteins - metabolism ; Investigations ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitochondrial Membrane Transport Proteins - genetics ; Mitochondrial Membrane Transport Proteins - metabolism ; Mitochondrial Membranes - metabolism ; Phenotype ; Point Mutation ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein Interaction Mapping ; Protein Transport ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism</subject><ispartof>Genetics (Austin), 2012-04, Vol.190 (4), p.1341-1353</ispartof><rights>Copyright Genetics Society of America Apr 2012</rights><rights>Copyright © 2012 by the Genetics Society of America 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-91c4eb70d25d07c4db542091776e6385144d5a72bdd4b8b70157141c78459ca43</citedby><cites>FETCH-LOGICAL-c498t-91c4eb70d25d07c4db542091776e6385144d5a72bdd4b8b70157141c78459ca43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22298705$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schilke, Brenda A</creatorcontrib><creatorcontrib>Hayashi, Masaya</creatorcontrib><creatorcontrib>Craig, Elizabeth A</creatorcontrib><title>Genetic analysis of complex interactions among components of the mitochondrial import motor and translocon in Saccharomyces cerevisiae</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>A highly conserved, Hsp70-based, import motor, which is associated with the translocase on the matrix side of the inner mitochondrial membrane, is critical for protein translocation into the matrix. Hsp70 is tethered to the translocon via interaction with Tim44. Pam18, the J-protein co-chaperone, and Pam16, a structurally related protein with which Pam18 forms a heterodimer, are also critical components of the motor. Their N termini are important for the heterodimer's translocon association, with Pam18's and Pam16's N termini interacting in the intermembrane space and the matrix, respectively. Here, using the model organism Saccharomyces cerevisiae, we report the identification of an N-terminal segment of Tim44, important for association of Pam16 with the translocon. We also report that higher amounts of Pam17, a nonessential motor component, are found associated with the translocon in both PAM16 and TIM44 mutants that affect their interaction with one another. These TIM44 and PAM16 mutations are also synthetically lethal with a deletion of PAM17. In contrast, a deletion of PAM17 has little, or no genetic interaction with a PAM18 mutation that affects translocon association of the Pam16:Pam18 heterodimer, suggesting a second role for the Pam16:Tim44 interaction. A similar pattern of genetic interactions and enhanced Pam17 translocon association was observed in the absence of the C terminus of Tim17, a core component of the translocon. We suggest the Pam16:Tim44 interaction may play two roles: (1) tethering the Pam16:Pam18 heterodimer to the translocon and (2) positioning the import motor for efficient engagement with the translocating polypeptide along with Tim17 and Pam17.</description><subject>Fungi</subject><subject>Gene Deletion</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Genes, Fungal</subject><subject>Genetics</subject><subject>HSP70 Heat-Shock Proteins - genetics</subject><subject>HSP70 Heat-Shock Proteins - metabolism</subject><subject>Investigations</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Membrane Transport Proteins - genetics</subject><subject>Mitochondrial Membrane Transport Proteins - metabolism</subject><subject>Mitochondrial Membranes - metabolism</subject><subject>Phenotype</subject><subject>Point Mutation</subject><subject>Protein Binding</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Interaction Mapping</subject><subject>Protein Transport</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><issn>1943-2631</issn><issn>0016-6731</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpVkV1rFDEUhoMotrb-AkECXu-ak4_JzI0gRVuh0Iva65BJsrspMzlrki3dP-DvNu22pV4l8L7nycdDyCdgS1BCfl2HFGp0ZQnAlyB6LcUbcgyDFAveCXj7an9EPpRyyxjrBtW_J0ec86HXTB2Tv-cHCrXJTvsSC8UVdThvp3BPY6ohW1cjpkLtjGn9GGEKqT4W6ybQOVZ0G0w-RzvR2OJc6YwVc2N6WrNNZUKHqeHotXVuYzPOexcKdSGHu1iiDafk3cpOJXx8Wk_Izc8fv88uFpdX57_Ovl8unBz6uhjAyTBq5rnyTDvpRyU5G0DrLnSiVyClV1bz0Xs59q0ISoMEp3upBmelOCHfDtztbpyDd-0h2U5mm-Ns896gjeb_JMWNWeOdEQK6TuoG-PIEyPhnF0o1t7jL7e-KAQZMaAmMt5Y4tFzGUnJYvZwAzDzIM8_yTJNnDvLa1OfXl3uZebYl_gHxWZu5</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Schilke, Brenda A</creator><creator>Hayashi, Masaya</creator><creator>Craig, Elizabeth A</creator><general>Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20120401</creationdate><title>Genetic analysis of complex interactions among components of the mitochondrial import motor and translocon in Saccharomyces cerevisiae</title><author>Schilke, Brenda A ; Hayashi, Masaya ; Craig, Elizabeth A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-91c4eb70d25d07c4db542091776e6385144d5a72bdd4b8b70157141c78459ca43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Fungi</topic><topic>Gene Deletion</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Genes, Fungal</topic><topic>Genetics</topic><topic>HSP70 Heat-Shock Proteins - genetics</topic><topic>HSP70 Heat-Shock Proteins - metabolism</topic><topic>Investigations</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Membrane Transport Proteins - genetics</topic><topic>Mitochondrial Membrane Transport Proteins - metabolism</topic><topic>Mitochondrial Membranes - metabolism</topic><topic>Phenotype</topic><topic>Point Mutation</topic><topic>Protein Binding</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Interaction Mapping</topic><topic>Protein Transport</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schilke, Brenda A</creatorcontrib><creatorcontrib>Hayashi, Masaya</creatorcontrib><creatorcontrib>Craig, Elizabeth A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schilke, Brenda A</au><au>Hayashi, Masaya</au><au>Craig, Elizabeth A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic analysis of complex interactions among components of the mitochondrial import motor and translocon in Saccharomyces cerevisiae</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2012-04-01</date><risdate>2012</risdate><volume>190</volume><issue>4</issue><spage>1341</spage><epage>1353</epage><pages>1341-1353</pages><issn>1943-2631</issn><issn>0016-6731</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>A highly conserved, Hsp70-based, import motor, which is associated with the translocase on the matrix side of the inner mitochondrial membrane, is critical for protein translocation into the matrix. Hsp70 is tethered to the translocon via interaction with Tim44. Pam18, the J-protein co-chaperone, and Pam16, a structurally related protein with which Pam18 forms a heterodimer, are also critical components of the motor. Their N termini are important for the heterodimer's translocon association, with Pam18's and Pam16's N termini interacting in the intermembrane space and the matrix, respectively. Here, using the model organism Saccharomyces cerevisiae, we report the identification of an N-terminal segment of Tim44, important for association of Pam16 with the translocon. We also report that higher amounts of Pam17, a nonessential motor component, are found associated with the translocon in both PAM16 and TIM44 mutants that affect their interaction with one another. These TIM44 and PAM16 mutations are also synthetically lethal with a deletion of PAM17. In contrast, a deletion of PAM17 has little, or no genetic interaction with a PAM18 mutation that affects translocon association of the Pam16:Pam18 heterodimer, suggesting a second role for the Pam16:Tim44 interaction. A similar pattern of genetic interactions and enhanced Pam17 translocon association was observed in the absence of the C terminus of Tim17, a core component of the translocon. We suggest the Pam16:Tim44 interaction may play two roles: (1) tethering the Pam16:Pam18 heterodimer to the translocon and (2) positioning the import motor for efficient engagement with the translocating polypeptide along with Tim17 and Pam17.</abstract><cop>United States</cop><pub>Genetics Society of America</pub><pmid>22298705</pmid><doi>10.1534/genetics.112.138743</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1943-2631 |
ispartof | Genetics (Austin), 2012-04, Vol.190 (4), p.1341-1353 |
issn | 1943-2631 0016-6731 1943-2631 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3316647 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Fungi Gene Deletion Gene Expression Regulation, Fungal Genes, Fungal Genetics HSP70 Heat-Shock Proteins - genetics HSP70 Heat-Shock Proteins - metabolism Investigations Membrane Transport Proteins - genetics Membrane Transport Proteins - metabolism Mitochondria Mitochondria - genetics Mitochondria - metabolism Mitochondrial Membrane Transport Proteins - genetics Mitochondrial Membrane Transport Proteins - metabolism Mitochondrial Membranes - metabolism Phenotype Point Mutation Protein Binding Protein Interaction Domains and Motifs Protein Interaction Mapping Protein Transport Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism |
title | Genetic analysis of complex interactions among components of the mitochondrial import motor and translocon in Saccharomyces cerevisiae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A40%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20analysis%20of%20complex%20interactions%20among%20components%20of%20the%20mitochondrial%20import%20motor%20and%20translocon%20in%20Saccharomyces%20cerevisiae&rft.jtitle=Genetics%20(Austin)&rft.au=Schilke,%20Brenda%20A&rft.date=2012-04-01&rft.volume=190&rft.issue=4&rft.spage=1341&rft.epage=1353&rft.pages=1341-1353&rft.issn=1943-2631&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1534/genetics.112.138743&rft_dat=%3Cproquest_pubme%3E2647807311%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010374102&rft_id=info:pmid/22298705&rfr_iscdi=true |