Nuclear Phytochrome A Signaling Promotes Phototropism in Arabidopsis

Phototropin photoreceptors (phot1 and phot2 in Arabidopsis thaliana) enable responses to directional light cues (e.g., positive phototropism in the hypocotyl). In Arabidopsis, phot1 is essential for phototropism in response to low light, a response that is also modulated by phytochrome A (phyA), rep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant cell 2012-02, Vol.24 (2), p.566-576
Hauptverfasser: Kami, Chitose, Hersch, Micha, Trevisan, Martine, Genoud, Thierry, Hiltbrunner, Andreas, Bergmann, Sven, Fankhauser, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 576
container_issue 2
container_start_page 566
container_title The Plant cell
container_volume 24
creator Kami, Chitose
Hersch, Micha
Trevisan, Martine
Genoud, Thierry
Hiltbrunner, Andreas
Bergmann, Sven
Fankhauser, Christian
description Phototropin photoreceptors (phot1 and phot2 in Arabidopsis thaliana) enable responses to directional light cues (e.g., positive phototropism in the hypocotyl). In Arabidopsis, phot1 is essential for phototropism in response to low light, a response that is also modulated by phytochrome A (phyA), representing a classical example of photoreceptor coaction. The molecular mechanisms underlying promotion of phototropism by phyA remain unclear. Most phyA responses require nuclear accumulation of the photoreceptor, but interestingly, it has been proposed that cytosolic phyA promotes phototropism. By comparing the kinetics of phototropism in seedlings with different subcellular localizations of phyA, we show that nuclear phyA accelerates the phototropic response, whereas in the fhy1 fhl mutant, in which phyA remains in the cytosol, phototropic bending is slower than in the wild type. Consistent with this data, we find that transcription factors needed for full phyA responses are needed for normal phototropism. Moreover, we show that phyA is the primary photoreceptor promoting the expression of phototropism regulators in low light (e.g., PHYTOCHROME KINASE SUBSTRATE1 [PKS1] and ROOT PHOTO TROPISM2 [RPT2]). Although phyA remains cytosolic in fhy1 fhl, induction of PKS1 and RPT2 expression still occurs in fhy1 fhl, indicating that a low level of nuclear phyA signaling is still present in fhy1 fhl.
doi_str_mv 10.1105/tpc.111.095083
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3315233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41489321</jstor_id><sourcerecordid>41489321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-64a5f766db52b075af1ccc2696ef3a1bf113bd4f6b25daccc014a853f25f0ab93</originalsourceid><addsrcrecordid>eNpdkc9rHCEcxaU0NMmm195aBnLIabZ-dXTWS2HZ_ITQBpJAb-I4uusyM07UCeS_r2XTJenJL76Pj6_vIfQF8BwAs-9p1HmAORYML-gHdASMkpKIxe-PecYVLivO4BAdx7jFGEMN4hM6JITWFRXkCJ3_nHRnVCjuNi_J603wvSmWxb1bD6pzw7q4yzc-mZgBn3wKfnSxL9xQLINqXOvH6OIJOrCqi-bz6zlDj5cXD6vr8vbX1c1qeVtqhlkqeaWYrTlvG0YaXDNlQWtNuODGUgWNBaBNW1neENaqLGGo1IJRS5jFqhF0hn7sfMep6U2rzZCC6uQYXK_Ci_TKyffK4DZy7Z8lpcAIpdng7NUg-KfJxCR7F7XpOjUYP0UpmABSE84zefofufVTyJlECRgLnlPNec_QfEfp4GMMxu53ASz_9iNzP3kAuesnP_j29gd7_F8hGfi6A7Yx-bDXK6gWghKgfwA7P5as</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1009646508</pqid></control><display><type>article</type><title>Nuclear Phytochrome A Signaling Promotes Phototropism in Arabidopsis</title><source>MEDLINE</source><source>JSTOR</source><source>EZB Electronic Journals Library</source><source>Oxford Journals</source><creator>Kami, Chitose ; Hersch, Micha ; Trevisan, Martine ; Genoud, Thierry ; Hiltbrunner, Andreas ; Bergmann, Sven ; Fankhauser, Christian</creator><creatorcontrib>Kami, Chitose ; Hersch, Micha ; Trevisan, Martine ; Genoud, Thierry ; Hiltbrunner, Andreas ; Bergmann, Sven ; Fankhauser, Christian</creatorcontrib><description>Phototropin photoreceptors (phot1 and phot2 in Arabidopsis thaliana) enable responses to directional light cues (e.g., positive phototropism in the hypocotyl). In Arabidopsis, phot1 is essential for phototropism in response to low light, a response that is also modulated by phytochrome A (phyA), representing a classical example of photoreceptor coaction. The molecular mechanisms underlying promotion of phototropism by phyA remain unclear. Most phyA responses require nuclear accumulation of the photoreceptor, but interestingly, it has been proposed that cytosolic phyA promotes phototropism. By comparing the kinetics of phototropism in seedlings with different subcellular localizations of phyA, we show that nuclear phyA accelerates the phototropic response, whereas in the fhy1 fhl mutant, in which phyA remains in the cytosol, phototropic bending is slower than in the wild type. Consistent with this data, we find that transcription factors needed for full phyA responses are needed for normal phototropism. Moreover, we show that phyA is the primary photoreceptor promoting the expression of phototropism regulators in low light (e.g., PHYTOCHROME KINASE SUBSTRATE1 [PKS1] and ROOT PHOTO TROPISM2 [RPT2]). Although phyA remains cytosolic in fhy1 fhl, induction of PKS1 and RPT2 expression still occurs in fhy1 fhl, indicating that a low level of nuclear phyA signaling is still present in fhy1 fhl.</description><identifier>ISSN: 1040-4651</identifier><identifier>EISSN: 1532-298X</identifier><identifier>DOI: 10.1105/tpc.111.095083</identifier><identifier>PMID: 22374392</identifier><language>eng</language><publisher>United States: American Society of Plant Physiologists</publisher><subject>Arabidopsis - genetics ; Arabidopsis - physiology ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis Proteins - physiology ; Bending ; Cell Nucleus - metabolism ; Computer software ; Cytosol - metabolism ; Gene expression ; Gene Expression Regulation, Plant ; Hypocotyls ; Intracellular Signaling Peptides and Proteins - metabolism ; Light ; Mutation ; Phenotypes ; Phosphoproteins - metabolism ; Photoreceptors ; Phototropism ; Phytochrome - metabolism ; Phytochrome A - genetics ; Phytochrome A - physiology ; Plant cells ; Plants ; Seedlings ; Seedlings - physiology ; Transcription Factors - metabolism</subject><ispartof>The Plant cell, 2012-02, Vol.24 (2), p.566-576</ispartof><rights>2012 American Society of Plant Biologists</rights><rights>Copyright American Society of Plant Biologists Feb 2012</rights><rights>2012 American Society of Plant Biologists. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-64a5f766db52b075af1ccc2696ef3a1bf113bd4f6b25daccc014a853f25f0ab93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41489321$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41489321$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22374392$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kami, Chitose</creatorcontrib><creatorcontrib>Hersch, Micha</creatorcontrib><creatorcontrib>Trevisan, Martine</creatorcontrib><creatorcontrib>Genoud, Thierry</creatorcontrib><creatorcontrib>Hiltbrunner, Andreas</creatorcontrib><creatorcontrib>Bergmann, Sven</creatorcontrib><creatorcontrib>Fankhauser, Christian</creatorcontrib><title>Nuclear Phytochrome A Signaling Promotes Phototropism in Arabidopsis</title><title>The Plant cell</title><addtitle>Plant Cell</addtitle><description>Phototropin photoreceptors (phot1 and phot2 in Arabidopsis thaliana) enable responses to directional light cues (e.g., positive phototropism in the hypocotyl). In Arabidopsis, phot1 is essential for phototropism in response to low light, a response that is also modulated by phytochrome A (phyA), representing a classical example of photoreceptor coaction. The molecular mechanisms underlying promotion of phototropism by phyA remain unclear. Most phyA responses require nuclear accumulation of the photoreceptor, but interestingly, it has been proposed that cytosolic phyA promotes phototropism. By comparing the kinetics of phototropism in seedlings with different subcellular localizations of phyA, we show that nuclear phyA accelerates the phototropic response, whereas in the fhy1 fhl mutant, in which phyA remains in the cytosol, phototropic bending is slower than in the wild type. Consistent with this data, we find that transcription factors needed for full phyA responses are needed for normal phototropism. Moreover, we show that phyA is the primary photoreceptor promoting the expression of phototropism regulators in low light (e.g., PHYTOCHROME KINASE SUBSTRATE1 [PKS1] and ROOT PHOTO TROPISM2 [RPT2]). Although phyA remains cytosolic in fhy1 fhl, induction of PKS1 and RPT2 expression still occurs in fhy1 fhl, indicating that a low level of nuclear phyA signaling is still present in fhy1 fhl.</description><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis Proteins - physiology</subject><subject>Bending</subject><subject>Cell Nucleus - metabolism</subject><subject>Computer software</subject><subject>Cytosol - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Hypocotyls</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>Light</subject><subject>Mutation</subject><subject>Phenotypes</subject><subject>Phosphoproteins - metabolism</subject><subject>Photoreceptors</subject><subject>Phototropism</subject><subject>Phytochrome - metabolism</subject><subject>Phytochrome A - genetics</subject><subject>Phytochrome A - physiology</subject><subject>Plant cells</subject><subject>Plants</subject><subject>Seedlings</subject><subject>Seedlings - physiology</subject><subject>Transcription Factors - metabolism</subject><issn>1040-4651</issn><issn>1532-298X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkc9rHCEcxaU0NMmm195aBnLIabZ-dXTWS2HZ_ITQBpJAb-I4uusyM07UCeS_r2XTJenJL76Pj6_vIfQF8BwAs-9p1HmAORYML-gHdASMkpKIxe-PecYVLivO4BAdx7jFGEMN4hM6JITWFRXkCJ3_nHRnVCjuNi_J603wvSmWxb1bD6pzw7q4yzc-mZgBn3wKfnSxL9xQLINqXOvH6OIJOrCqi-bz6zlDj5cXD6vr8vbX1c1qeVtqhlkqeaWYrTlvG0YaXDNlQWtNuODGUgWNBaBNW1neENaqLGGo1IJRS5jFqhF0hn7sfMep6U2rzZCC6uQYXK_Ci_TKyffK4DZy7Z8lpcAIpdng7NUg-KfJxCR7F7XpOjUYP0UpmABSE84zefofufVTyJlECRgLnlPNec_QfEfp4GMMxu53ASz_9iNzP3kAuesnP_j29gd7_F8hGfi6A7Yx-bDXK6gWghKgfwA7P5as</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Kami, Chitose</creator><creator>Hersch, Micha</creator><creator>Trevisan, Martine</creator><creator>Genoud, Thierry</creator><creator>Hiltbrunner, Andreas</creator><creator>Bergmann, Sven</creator><creator>Fankhauser, Christian</creator><general>American Society of Plant Physiologists</general><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7QO</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120201</creationdate><title>Nuclear Phytochrome A Signaling Promotes Phototropism in Arabidopsis</title><author>Kami, Chitose ; Hersch, Micha ; Trevisan, Martine ; Genoud, Thierry ; Hiltbrunner, Andreas ; Bergmann, Sven ; Fankhauser, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-64a5f766db52b075af1ccc2696ef3a1bf113bd4f6b25daccc014a853f25f0ab93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis Proteins - physiology</topic><topic>Bending</topic><topic>Cell Nucleus - metabolism</topic><topic>Computer software</topic><topic>Cytosol - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Hypocotyls</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>Light</topic><topic>Mutation</topic><topic>Phenotypes</topic><topic>Phosphoproteins - metabolism</topic><topic>Photoreceptors</topic><topic>Phototropism</topic><topic>Phytochrome - metabolism</topic><topic>Phytochrome A - genetics</topic><topic>Phytochrome A - physiology</topic><topic>Plant cells</topic><topic>Plants</topic><topic>Seedlings</topic><topic>Seedlings - physiology</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kami, Chitose</creatorcontrib><creatorcontrib>Hersch, Micha</creatorcontrib><creatorcontrib>Trevisan, Martine</creatorcontrib><creatorcontrib>Genoud, Thierry</creatorcontrib><creatorcontrib>Hiltbrunner, Andreas</creatorcontrib><creatorcontrib>Bergmann, Sven</creatorcontrib><creatorcontrib>Fankhauser, Christian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kami, Chitose</au><au>Hersch, Micha</au><au>Trevisan, Martine</au><au>Genoud, Thierry</au><au>Hiltbrunner, Andreas</au><au>Bergmann, Sven</au><au>Fankhauser, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear Phytochrome A Signaling Promotes Phototropism in Arabidopsis</atitle><jtitle>The Plant cell</jtitle><addtitle>Plant Cell</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>24</volume><issue>2</issue><spage>566</spage><epage>576</epage><pages>566-576</pages><issn>1040-4651</issn><eissn>1532-298X</eissn><abstract>Phototropin photoreceptors (phot1 and phot2 in Arabidopsis thaliana) enable responses to directional light cues (e.g., positive phototropism in the hypocotyl). In Arabidopsis, phot1 is essential for phototropism in response to low light, a response that is also modulated by phytochrome A (phyA), representing a classical example of photoreceptor coaction. The molecular mechanisms underlying promotion of phototropism by phyA remain unclear. Most phyA responses require nuclear accumulation of the photoreceptor, but interestingly, it has been proposed that cytosolic phyA promotes phototropism. By comparing the kinetics of phototropism in seedlings with different subcellular localizations of phyA, we show that nuclear phyA accelerates the phototropic response, whereas in the fhy1 fhl mutant, in which phyA remains in the cytosol, phototropic bending is slower than in the wild type. Consistent with this data, we find that transcription factors needed for full phyA responses are needed for normal phototropism. Moreover, we show that phyA is the primary photoreceptor promoting the expression of phototropism regulators in low light (e.g., PHYTOCHROME KINASE SUBSTRATE1 [PKS1] and ROOT PHOTO TROPISM2 [RPT2]). Although phyA remains cytosolic in fhy1 fhl, induction of PKS1 and RPT2 expression still occurs in fhy1 fhl, indicating that a low level of nuclear phyA signaling is still present in fhy1 fhl.</abstract><cop>United States</cop><pub>American Society of Plant Physiologists</pub><pmid>22374392</pmid><doi>10.1105/tpc.111.095083</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1040-4651
ispartof The Plant cell, 2012-02, Vol.24 (2), p.566-576
issn 1040-4651
1532-298X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3315233
source MEDLINE; JSTOR; EZB Electronic Journals Library; Oxford Journals
subjects Arabidopsis - genetics
Arabidopsis - physiology
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis Proteins - physiology
Bending
Cell Nucleus - metabolism
Computer software
Cytosol - metabolism
Gene expression
Gene Expression Regulation, Plant
Hypocotyls
Intracellular Signaling Peptides and Proteins - metabolism
Light
Mutation
Phenotypes
Phosphoproteins - metabolism
Photoreceptors
Phototropism
Phytochrome - metabolism
Phytochrome A - genetics
Phytochrome A - physiology
Plant cells
Plants
Seedlings
Seedlings - physiology
Transcription Factors - metabolism
title Nuclear Phytochrome A Signaling Promotes Phototropism in Arabidopsis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A15%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20Phytochrome%20A%20Signaling%20Promotes%20Phototropism%20in%20Arabidopsis&rft.jtitle=The%20Plant%20cell&rft.au=Kami,%20Chitose&rft.date=2012-02-01&rft.volume=24&rft.issue=2&rft.spage=566&rft.epage=576&rft.pages=566-576&rft.issn=1040-4651&rft.eissn=1532-298X&rft_id=info:doi/10.1105/tpc.111.095083&rft_dat=%3Cjstor_pubme%3E41489321%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1009646508&rft_id=info:pmid/22374392&rft_jstor_id=41489321&rfr_iscdi=true