Yeast Sen1 Helicase Protects the Genome from Transcription-Associated Instability

Sen1 of S. cerevisiae is a known component of the NRD complex implicated in transcription termination of nonpolyadenylated as well as some polyadenylated RNA polymerase II transcripts. We now show that Sen1 helicase possesses a wider function by restricting the occurrence of RNA:DNA hybrids that may...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2011-01, Vol.41 (1), p.21-32
Hauptverfasser: Mischo, Hannah E., Gómez-González, Belén, Grzechnik, Pawel, Rondón, Ana G., Wei, Wu, Steinmetz, Lars, Aguilera, Andrés, Proudfoot, Nick J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sen1 of S. cerevisiae is a known component of the NRD complex implicated in transcription termination of nonpolyadenylated as well as some polyadenylated RNA polymerase II transcripts. We now show that Sen1 helicase possesses a wider function by restricting the occurrence of RNA:DNA hybrids that may naturally form during transcription, when nascent RNA hybridizes to DNA prior to its packaging into RNA protein complexes. These hybrids displace the nontranscribed strand and create R loop structures. Loss of Sen1 results in transient R loop accumulation and so elicits transcription-associated recombination. SEN1 genetically interacts with DNA repair genes, suggesting that R loop resolution requires proteins involved in homologous recombination. Based on these findings, we propose that R loop formation is a frequent event during transcription and a key function of Sen1 is to prevent their accumulation and associated genome instability. [Display omitted] ► Nascent RNA forms hybrids with underwound DNA upstream of elongating Pol II ► Single-stranded DNA so formed is prone to damage which results in genome instability ► Sen1 helicase acts to remove R loops by resolving RNA:DNA hybrids ► Sen1 function in Pol II elongation and termination may relate to R loop resolution
ISSN:1097-2765
1097-4164
DOI:10.1016/j.molcel.2010.12.007