MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca²⁺ overload and cell death
Early reperfusion of ischemic cardiac tissue remains the most effective intervention for improving clinical outcome following myocardial infarction. However, abnormal increases in intracellular Ca²⁺ during myocardial reperfusion can cause cardiomyocyte death and consequent loss of cardiac function,...
Gespeichert in:
Veröffentlicht in: | The Journal of clinical investigation 2012-04, Vol.122 (4), p.1222-1232 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1232 |
---|---|
container_issue | 4 |
container_start_page | 1222 |
container_title | The Journal of clinical investigation |
container_volume | 122 |
creator | Aurora, Arin B Mahmoud, Ahmed I Luo, Xiang Johnson, Brett A van Rooij, Eva Matsuzaki, Satoshi Humphries, Kenneth M Hill, Joseph A Bassel-Duby, Rhonda Sadek, Hesham A Olson, Eric N |
description | Early reperfusion of ischemic cardiac tissue remains the most effective intervention for improving clinical outcome following myocardial infarction. However, abnormal increases in intracellular Ca²⁺ during myocardial reperfusion can cause cardiomyocyte death and consequent loss of cardiac function, referred to as ischemia/reperfusion (IR) injury. Therapeutic modulation of Ca²⁺ handling provides some cardioprotection against the paradoxical effects of restoring blood flow to the heart, highlighting the significance of Ca²⁺ overload to IR injury. Cardiac IR is also accompanied by dynamic changes in the expression of microRNAs (miRNAs); for example, miR-214 is upregulated during ischemic injury and heart failure, but its potential role in these processes is unknown. Here, we show that genetic deletion of miR-214 in mice causes loss of cardiac contractility, increased apoptosis, and excessive fibrosis in response to IR injury. The cardioprotective roles of miR-214 during IR injury were attributed to repression of the mRNA encoding sodium/calcium exchanger 1 (Ncx1), a key regulator of Ca²⁺ influx; and to repression of several downstream effectors of Ca²⁺ signaling that mediate cell death. These findings reveal a pivotal role for miR-214 as a regulator of cardiomyocyte Ca²⁺ homeostasis and survival during cardiac injury. |
doi_str_mv | 10.1172/jci59327 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3314458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22426211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-f311d04944e23a07602bbe3ba928a2a8a3df9cd0913b288dcc9c7de7c7f9ae733</originalsourceid><addsrcrecordid>eNpVkMtKAzEUhoMotlbBJ5As3YzmNk2yEaR4qVQF0fWQSTKdlJlJSaaFLn0lly59FJ_EqdWiq7M4__-dwwfAMUZnGHNyPtMulZTwHdDHaSoSQajYBX2ECE4kp6IHDmKcIYQZS9k-6BHCyJBg3Afu3ungnx4uE4IZnAffWt1G2JYW1n4RLSytCi0sgq-hi7q0tdPQNbNFWMF8BbVv2uCryjVTOFIfb5-v79Avbai8MlA1BmpbVdBY1ZaHYK9QVbRHP3MAXq6vnke3yeTxZjy6nCSaoWGbFBRjg5hkzBKqEB8ikueW5koSoYgSippCaoMkpjkRwmgtNTeWa15IZTmlA3Cx4c4XeW2Ntt2HqsrmwdUqrDKvXPZ_07gym_plRulaj-gApxtAJybGYIttF6NsrTu7G42_dXfRk7-3tsFfv_QLTCN-gw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca²⁺ overload and cell death</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Journals@Ovid Ovid Autoload</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Aurora, Arin B ; Mahmoud, Ahmed I ; Luo, Xiang ; Johnson, Brett A ; van Rooij, Eva ; Matsuzaki, Satoshi ; Humphries, Kenneth M ; Hill, Joseph A ; Bassel-Duby, Rhonda ; Sadek, Hesham A ; Olson, Eric N</creator><creatorcontrib>Aurora, Arin B ; Mahmoud, Ahmed I ; Luo, Xiang ; Johnson, Brett A ; van Rooij, Eva ; Matsuzaki, Satoshi ; Humphries, Kenneth M ; Hill, Joseph A ; Bassel-Duby, Rhonda ; Sadek, Hesham A ; Olson, Eric N</creatorcontrib><description>Early reperfusion of ischemic cardiac tissue remains the most effective intervention for improving clinical outcome following myocardial infarction. However, abnormal increases in intracellular Ca²⁺ during myocardial reperfusion can cause cardiomyocyte death and consequent loss of cardiac function, referred to as ischemia/reperfusion (IR) injury. Therapeutic modulation of Ca²⁺ handling provides some cardioprotection against the paradoxical effects of restoring blood flow to the heart, highlighting the significance of Ca²⁺ overload to IR injury. Cardiac IR is also accompanied by dynamic changes in the expression of microRNAs (miRNAs); for example, miR-214 is upregulated during ischemic injury and heart failure, but its potential role in these processes is unknown. Here, we show that genetic deletion of miR-214 in mice causes loss of cardiac contractility, increased apoptosis, and excessive fibrosis in response to IR injury. The cardioprotective roles of miR-214 during IR injury were attributed to repression of the mRNA encoding sodium/calcium exchanger 1 (Ncx1), a key regulator of Ca²⁺ influx; and to repression of several downstream effectors of Ca²⁺ signaling that mediate cell death. These findings reveal a pivotal role for miR-214 as a regulator of cardiomyocyte Ca²⁺ homeostasis and survival during cardiac injury.</description><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/jci59327</identifier><identifier>PMID: 22426211</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Animals ; Apoptosis - physiology ; Calcium Signaling - physiology ; Cells, Cultured - metabolism ; Gene Deletion ; Gene Expression Regulation ; Gene Knockdown Techniques ; Mice ; Mice, Knockout ; MicroRNAs - antagonists & inhibitors ; MicroRNAs - genetics ; MicroRNAs - physiology ; Mitochondria - physiology ; Myocardial Contraction - physiology ; Myocardial Reperfusion Injury - metabolism ; Myocardial Reperfusion Injury - pathology ; Myocardial Reperfusion Injury - prevention & control ; Myocardium - metabolism ; Myocardium - pathology ; Myocytes, Cardiac - metabolism ; Rats ; Rats, Sprague-Dawley ; RNA, Messenger - biosynthesis ; Sodium-Calcium Exchanger - biosynthesis ; Sodium-Calcium Exchanger - genetics</subject><ispartof>The Journal of clinical investigation, 2012-04, Vol.122 (4), p.1222-1232</ispartof><rights>Copyright © 2012, American Society for Clinical Investigation 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-f311d04944e23a07602bbe3ba928a2a8a3df9cd0913b288dcc9c7de7c7f9ae733</citedby><cites>FETCH-LOGICAL-c406t-f311d04944e23a07602bbe3ba928a2a8a3df9cd0913b288dcc9c7de7c7f9ae733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3314458/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3314458/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22426211$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aurora, Arin B</creatorcontrib><creatorcontrib>Mahmoud, Ahmed I</creatorcontrib><creatorcontrib>Luo, Xiang</creatorcontrib><creatorcontrib>Johnson, Brett A</creatorcontrib><creatorcontrib>van Rooij, Eva</creatorcontrib><creatorcontrib>Matsuzaki, Satoshi</creatorcontrib><creatorcontrib>Humphries, Kenneth M</creatorcontrib><creatorcontrib>Hill, Joseph A</creatorcontrib><creatorcontrib>Bassel-Duby, Rhonda</creatorcontrib><creatorcontrib>Sadek, Hesham A</creatorcontrib><creatorcontrib>Olson, Eric N</creatorcontrib><title>MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca²⁺ overload and cell death</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>Early reperfusion of ischemic cardiac tissue remains the most effective intervention for improving clinical outcome following myocardial infarction. However, abnormal increases in intracellular Ca²⁺ during myocardial reperfusion can cause cardiomyocyte death and consequent loss of cardiac function, referred to as ischemia/reperfusion (IR) injury. Therapeutic modulation of Ca²⁺ handling provides some cardioprotection against the paradoxical effects of restoring blood flow to the heart, highlighting the significance of Ca²⁺ overload to IR injury. Cardiac IR is also accompanied by dynamic changes in the expression of microRNAs (miRNAs); for example, miR-214 is upregulated during ischemic injury and heart failure, but its potential role in these processes is unknown. Here, we show that genetic deletion of miR-214 in mice causes loss of cardiac contractility, increased apoptosis, and excessive fibrosis in response to IR injury. The cardioprotective roles of miR-214 during IR injury were attributed to repression of the mRNA encoding sodium/calcium exchanger 1 (Ncx1), a key regulator of Ca²⁺ influx; and to repression of several downstream effectors of Ca²⁺ signaling that mediate cell death. These findings reveal a pivotal role for miR-214 as a regulator of cardiomyocyte Ca²⁺ homeostasis and survival during cardiac injury.</description><subject>Animals</subject><subject>Apoptosis - physiology</subject><subject>Calcium Signaling - physiology</subject><subject>Cells, Cultured - metabolism</subject><subject>Gene Deletion</subject><subject>Gene Expression Regulation</subject><subject>Gene Knockdown Techniques</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>MicroRNAs - antagonists & inhibitors</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - physiology</subject><subject>Mitochondria - physiology</subject><subject>Myocardial Contraction - physiology</subject><subject>Myocardial Reperfusion Injury - metabolism</subject><subject>Myocardial Reperfusion Injury - pathology</subject><subject>Myocardial Reperfusion Injury - prevention & control</subject><subject>Myocardium - metabolism</subject><subject>Myocardium - pathology</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>RNA, Messenger - biosynthesis</subject><subject>Sodium-Calcium Exchanger - biosynthesis</subject><subject>Sodium-Calcium Exchanger - genetics</subject><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkMtKAzEUhoMotlbBJ5As3YzmNk2yEaR4qVQF0fWQSTKdlJlJSaaFLn0lly59FJ_EqdWiq7M4__-dwwfAMUZnGHNyPtMulZTwHdDHaSoSQajYBX2ECE4kp6IHDmKcIYQZS9k-6BHCyJBg3Afu3ungnx4uE4IZnAffWt1G2JYW1n4RLSytCi0sgq-hi7q0tdPQNbNFWMF8BbVv2uCryjVTOFIfb5-v79Avbai8MlA1BmpbVdBY1ZaHYK9QVbRHP3MAXq6vnke3yeTxZjy6nCSaoWGbFBRjg5hkzBKqEB8ikueW5koSoYgSippCaoMkpjkRwmgtNTeWa15IZTmlA3Cx4c4XeW2Ntt2HqsrmwdUqrDKvXPZ_07gym_plRulaj-gApxtAJybGYIttF6NsrTu7G42_dXfRk7-3tsFfv_QLTCN-gw</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Aurora, Arin B</creator><creator>Mahmoud, Ahmed I</creator><creator>Luo, Xiang</creator><creator>Johnson, Brett A</creator><creator>van Rooij, Eva</creator><creator>Matsuzaki, Satoshi</creator><creator>Humphries, Kenneth M</creator><creator>Hill, Joseph A</creator><creator>Bassel-Duby, Rhonda</creator><creator>Sadek, Hesham A</creator><creator>Olson, Eric N</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20120401</creationdate><title>MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca²⁺ overload and cell death</title><author>Aurora, Arin B ; Mahmoud, Ahmed I ; Luo, Xiang ; Johnson, Brett A ; van Rooij, Eva ; Matsuzaki, Satoshi ; Humphries, Kenneth M ; Hill, Joseph A ; Bassel-Duby, Rhonda ; Sadek, Hesham A ; Olson, Eric N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-f311d04944e23a07602bbe3ba928a2a8a3df9cd0913b288dcc9c7de7c7f9ae733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Apoptosis - physiology</topic><topic>Calcium Signaling - physiology</topic><topic>Cells, Cultured - metabolism</topic><topic>Gene Deletion</topic><topic>Gene Expression Regulation</topic><topic>Gene Knockdown Techniques</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>MicroRNAs - antagonists & inhibitors</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - physiology</topic><topic>Mitochondria - physiology</topic><topic>Myocardial Contraction - physiology</topic><topic>Myocardial Reperfusion Injury - metabolism</topic><topic>Myocardial Reperfusion Injury - pathology</topic><topic>Myocardial Reperfusion Injury - prevention & control</topic><topic>Myocardium - metabolism</topic><topic>Myocardium - pathology</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>RNA, Messenger - biosynthesis</topic><topic>Sodium-Calcium Exchanger - biosynthesis</topic><topic>Sodium-Calcium Exchanger - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aurora, Arin B</creatorcontrib><creatorcontrib>Mahmoud, Ahmed I</creatorcontrib><creatorcontrib>Luo, Xiang</creatorcontrib><creatorcontrib>Johnson, Brett A</creatorcontrib><creatorcontrib>van Rooij, Eva</creatorcontrib><creatorcontrib>Matsuzaki, Satoshi</creatorcontrib><creatorcontrib>Humphries, Kenneth M</creatorcontrib><creatorcontrib>Hill, Joseph A</creatorcontrib><creatorcontrib>Bassel-Duby, Rhonda</creatorcontrib><creatorcontrib>Sadek, Hesham A</creatorcontrib><creatorcontrib>Olson, Eric N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aurora, Arin B</au><au>Mahmoud, Ahmed I</au><au>Luo, Xiang</au><au>Johnson, Brett A</au><au>van Rooij, Eva</au><au>Matsuzaki, Satoshi</au><au>Humphries, Kenneth M</au><au>Hill, Joseph A</au><au>Bassel-Duby, Rhonda</au><au>Sadek, Hesham A</au><au>Olson, Eric N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca²⁺ overload and cell death</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2012-04-01</date><risdate>2012</risdate><volume>122</volume><issue>4</issue><spage>1222</spage><epage>1232</epage><pages>1222-1232</pages><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Early reperfusion of ischemic cardiac tissue remains the most effective intervention for improving clinical outcome following myocardial infarction. However, abnormal increases in intracellular Ca²⁺ during myocardial reperfusion can cause cardiomyocyte death and consequent loss of cardiac function, referred to as ischemia/reperfusion (IR) injury. Therapeutic modulation of Ca²⁺ handling provides some cardioprotection against the paradoxical effects of restoring blood flow to the heart, highlighting the significance of Ca²⁺ overload to IR injury. Cardiac IR is also accompanied by dynamic changes in the expression of microRNAs (miRNAs); for example, miR-214 is upregulated during ischemic injury and heart failure, but its potential role in these processes is unknown. Here, we show that genetic deletion of miR-214 in mice causes loss of cardiac contractility, increased apoptosis, and excessive fibrosis in response to IR injury. The cardioprotective roles of miR-214 during IR injury were attributed to repression of the mRNA encoding sodium/calcium exchanger 1 (Ncx1), a key regulator of Ca²⁺ influx; and to repression of several downstream effectors of Ca²⁺ signaling that mediate cell death. These findings reveal a pivotal role for miR-214 as a regulator of cardiomyocyte Ca²⁺ homeostasis and survival during cardiac injury.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>22426211</pmid><doi>10.1172/jci59327</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9738 |
ispartof | The Journal of clinical investigation, 2012-04, Vol.122 (4), p.1222-1232 |
issn | 0021-9738 1558-8238 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3314458 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Journals@Ovid Ovid Autoload; PubMed Central; Alma/SFX Local Collection |
subjects | Animals Apoptosis - physiology Calcium Signaling - physiology Cells, Cultured - metabolism Gene Deletion Gene Expression Regulation Gene Knockdown Techniques Mice Mice, Knockout MicroRNAs - antagonists & inhibitors MicroRNAs - genetics MicroRNAs - physiology Mitochondria - physiology Myocardial Contraction - physiology Myocardial Reperfusion Injury - metabolism Myocardial Reperfusion Injury - pathology Myocardial Reperfusion Injury - prevention & control Myocardium - metabolism Myocardium - pathology Myocytes, Cardiac - metabolism Rats Rats, Sprague-Dawley RNA, Messenger - biosynthesis Sodium-Calcium Exchanger - biosynthesis Sodium-Calcium Exchanger - genetics |
title | MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca²⁺ overload and cell death |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T17%3A17%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MicroRNA-214%20protects%20the%20mouse%20heart%20from%20ischemic%20injury%20by%20controlling%20Ca%C2%B2%E2%81%BA%20overload%20and%20cell%20death&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Aurora,%20Arin%20B&rft.date=2012-04-01&rft.volume=122&rft.issue=4&rft.spage=1222&rft.epage=1232&rft.pages=1222-1232&rft.issn=0021-9738&rft.eissn=1558-8238&rft_id=info:doi/10.1172/jci59327&rft_dat=%3Cpubmed_cross%3E22426211%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22426211&rfr_iscdi=true |