Wnt/β-catenin signaling promotes differentiation, not self-renewal, of human embryonic stem cells and is repressed by Oct4
Signal transduction pathways play diverse, context-dependent roles in vertebrate development. In studies of human embryonic stem cells (hESCs), conflicting reports claim Wnt/β-catenin signaling promotes either self-renewal or differentiation. We use a sensitive reporter to establish that Wnt/β-caten...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2012-03, Vol.109 (12), p.4485-4490 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Signal transduction pathways play diverse, context-dependent roles in vertebrate development. In studies of human embryonic stem cells (hESCs), conflicting reports claim Wnt/β-catenin signaling promotes either self-renewal or differentiation. We use a sensitive reporter to establish that Wnt/β-catenin signaling is not active during hESC self-renewal. Inhibiting this pathway over multiple passages has no detrimental effect on hESC maintenance, whereas activating signaling results in loss of self-renewal and induction of mesoderm lineage genes. Following exposure to pathway agonists, hESCs exhibit a delay in activation of β-catenin signaling, which led us to postulate that Wnt/β-catenin signaling is actively repressed during self-renewal. In support of this hypothesis, we demonstrate that OCT4 represses β-catenin signaling during self-renewal and that targeted knockdown of OCT4 activates β-catenin signaling in hESCs. Using a fluorescent reporter of β-catenin signaling in live hESCs, we observe that the reporter is activated in a very heterogeneous manner in response to stimulation with Wnt ligand. Sorting cells on the basis of their fluorescence reveals that hESCs with elevated β-catenin signaling express higher levels of differentiation markers. Together these data support a dominant role for Wnt/β-catenin signaling in the differentiation rather than self-renewal of hESCs. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1118777109 |