Three genes under different developmental control encode elongation factor 1-α in Xenopus laevis
We have cloned cDNAs encoding two variants of the elongation factor for protein synthesis in Xenopus laevis, called EF-1 alpha. One of these (42Sp50) is expressed exclusively in immature oocytes. It is one of two protein components of a 42S RNP particle that is very abundant in previtellogenic oocyt...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 1990-06, Vol.18 (12), p.3489-3493 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3493 |
---|---|
container_issue | 12 |
container_start_page | 3489 |
container_title | Nucleic acids research |
container_volume | 18 |
creator | DJE, M. K MAZABRAUD, A VIEL, A LE MAIRE, M DENIS, H CRAWFORD, E BROWN, D. D |
description | We have cloned cDNAs encoding two variants of the elongation factor for protein synthesis in Xenopus laevis, called EF-1 alpha. One of these (42Sp50) is expressed exclusively in immature oocytes. It is one of two protein components of a 42S RNP particle that is very abundant in previtellogenic oocytes. The 42S RNP particle consists of various tRNAs, 5S RNA, 42Sp50 and a 5S RNA binding protein (42Sp43). A major function served by 42Sp50 appears to be the storage of tRNAs for later use in oogenesis and early embryogenesis. The second EF-1 alpha variant (EF-1 alpha O) is expressed mainly in oocytes but transiently in early embryogenesis as well. Its mRNA cannot be detected after neurulation in somatic cells. EF-1 alpha O is closely related to a third EF-1 alpha (EF-1 alpha S), discovered originally by Krieg et al. (1). EF-1 alpha S is expressed at low levels in oocytes but actively in somatic cells. The latter two proteins are very similar to known eukaryotic EF-1 alpha from other organisms and presumably function in their respective cell types to support protein synthesis. |
doi_str_mv | 10.1093/nar/18.12.3489 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_331001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19623306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-6cbcbe4a0f2d236d9100cdb4f6385ab8eee177e387c3d4942c209e996d8c167c3</originalsourceid><addsrcrecordid>eNqFkUFvVCEUhYnR1Gl1686Eje7elAs8BhYuTKPVpImbmrgjPLhvinkDI7w3iT_LP-JvkkknVVddQTjfuRw4hLwCtgZmxGVy5RL0GvhaSG2ekBUIxTtpFH9KVkywvgMm9XNyXut3xkBCL8_IGW-QZnJF3O1dQaRbTFjpkgIWGuI4YsE004AHnPJ-1_Zuoj6nueSJYvI5IG1K2ro55kRH5-dcKHS_f9GY6DdMeb9UOjk8xPqCPBvdVPHlab0gXz9-uL361N18uf589f6m86KHuVN-8ANKx0YeWrpggDEfBjkqoXs3aESEzQaF3ngRpJHcc2bQGBW0B9UOL8i7-7n7Zdhh8C10cZPdl7hz5afNLtr_lRTv7DYfrBDtKmj-tyd_yT8WrLPdxepxmlzCvFS7MVr1XLFHQWh_LwRTj4O9MUbzI7i-B33JtRYcH1IDs8eWbWvZgrbA7bHlZnj971sf8FOtTX9z0l31bhqLSz7Wv1ONYlpzLv4ALJazCw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15999826</pqid></control><display><type>article</type><title>Three genes under different developmental control encode elongation factor 1-α in Xenopus laevis</title><source>MEDLINE</source><source>PubMed Central</source><source>Oxford University Press Journals Digital Archive Legacy</source><creator>DJE, M. K ; MAZABRAUD, A ; VIEL, A ; LE MAIRE, M ; DENIS, H ; CRAWFORD, E ; BROWN, D. D</creator><creatorcontrib>DJE, M. K ; MAZABRAUD, A ; VIEL, A ; LE MAIRE, M ; DENIS, H ; CRAWFORD, E ; BROWN, D. D</creatorcontrib><description>We have cloned cDNAs encoding two variants of the elongation factor for protein synthesis in Xenopus laevis, called EF-1 alpha. One of these (42Sp50) is expressed exclusively in immature oocytes. It is one of two protein components of a 42S RNP particle that is very abundant in previtellogenic oocytes. The 42S RNP particle consists of various tRNAs, 5S RNA, 42Sp50 and a 5S RNA binding protein (42Sp43). A major function served by 42Sp50 appears to be the storage of tRNAs for later use in oogenesis and early embryogenesis. The second EF-1 alpha variant (EF-1 alpha O) is expressed mainly in oocytes but transiently in early embryogenesis as well. Its mRNA cannot be detected after neurulation in somatic cells. EF-1 alpha O is closely related to a third EF-1 alpha (EF-1 alpha S), discovered originally by Krieg et al. (1). EF-1 alpha S is expressed at low levels in oocytes but actively in somatic cells. The latter two proteins are very similar to known eukaryotic EF-1 alpha from other organisms and presumably function in their respective cell types to support protein synthesis.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/18.12.3489</identifier><identifier>PMID: 2362804</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Amino Acid Sequence ; Animals ; Base Sequence ; Biological and medical sciences ; Blotting, Northern ; Cloning, Molecular ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation ; Genes ; Genes. Genome ; Liver - metabolism ; Molecular and cellular biology ; Molecular genetics ; Molecular Sequence Data ; Oocytes - metabolism ; Peptide Elongation Factor 1 ; Peptide Elongation Factors - biosynthesis ; Peptide Elongation Factors - genetics ; Ribonucleoproteins - genetics ; Sequence Homology, Nucleic Acid ; Xenopus laevis</subject><ispartof>Nucleic acids research, 1990-06, Vol.18 (12), p.3489-3493</ispartof><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-6cbcbe4a0f2d236d9100cdb4f6385ab8eee177e387c3d4942c209e996d8c167c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC331001/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC331001/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19608822$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2362804$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>DJE, M. K</creatorcontrib><creatorcontrib>MAZABRAUD, A</creatorcontrib><creatorcontrib>VIEL, A</creatorcontrib><creatorcontrib>LE MAIRE, M</creatorcontrib><creatorcontrib>DENIS, H</creatorcontrib><creatorcontrib>CRAWFORD, E</creatorcontrib><creatorcontrib>BROWN, D. D</creatorcontrib><title>Three genes under different developmental control encode elongation factor 1-α in Xenopus laevis</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>We have cloned cDNAs encoding two variants of the elongation factor for protein synthesis in Xenopus laevis, called EF-1 alpha. One of these (42Sp50) is expressed exclusively in immature oocytes. It is one of two protein components of a 42S RNP particle that is very abundant in previtellogenic oocytes. The 42S RNP particle consists of various tRNAs, 5S RNA, 42Sp50 and a 5S RNA binding protein (42Sp43). A major function served by 42Sp50 appears to be the storage of tRNAs for later use in oogenesis and early embryogenesis. The second EF-1 alpha variant (EF-1 alpha O) is expressed mainly in oocytes but transiently in early embryogenesis as well. Its mRNA cannot be detected after neurulation in somatic cells. EF-1 alpha O is closely related to a third EF-1 alpha (EF-1 alpha S), discovered originally by Krieg et al. (1). EF-1 alpha S is expressed at low levels in oocytes but actively in somatic cells. The latter two proteins are very similar to known eukaryotic EF-1 alpha from other organisms and presumably function in their respective cell types to support protein synthesis.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Blotting, Northern</subject><subject>Cloning, Molecular</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation</subject><subject>Genes</subject><subject>Genes. Genome</subject><subject>Liver - metabolism</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecular Sequence Data</subject><subject>Oocytes - metabolism</subject><subject>Peptide Elongation Factor 1</subject><subject>Peptide Elongation Factors - biosynthesis</subject><subject>Peptide Elongation Factors - genetics</subject><subject>Ribonucleoproteins - genetics</subject><subject>Sequence Homology, Nucleic Acid</subject><subject>Xenopus laevis</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFvVCEUhYnR1Gl1686Eje7elAs8BhYuTKPVpImbmrgjPLhvinkDI7w3iT_LP-JvkkknVVddQTjfuRw4hLwCtgZmxGVy5RL0GvhaSG2ekBUIxTtpFH9KVkywvgMm9XNyXut3xkBCL8_IGW-QZnJF3O1dQaRbTFjpkgIWGuI4YsE004AHnPJ-1_Zuoj6nueSJYvI5IG1K2ro55kRH5-dcKHS_f9GY6DdMeb9UOjk8xPqCPBvdVPHlab0gXz9-uL361N18uf589f6m86KHuVN-8ANKx0YeWrpggDEfBjkqoXs3aESEzQaF3ngRpJHcc2bQGBW0B9UOL8i7-7n7Zdhh8C10cZPdl7hz5afNLtr_lRTv7DYfrBDtKmj-tyd_yT8WrLPdxepxmlzCvFS7MVr1XLFHQWh_LwRTj4O9MUbzI7i-B33JtRYcH1IDs8eWbWvZgrbA7bHlZnj971sf8FOtTX9z0l31bhqLSz7Wv1ONYlpzLv4ALJazCw</recordid><startdate>19900625</startdate><enddate>19900625</enddate><creator>DJE, M. K</creator><creator>MAZABRAUD, A</creator><creator>VIEL, A</creator><creator>LE MAIRE, M</creator><creator>DENIS, H</creator><creator>CRAWFORD, E</creator><creator>BROWN, D. D</creator><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M81</scope><scope>P64</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19900625</creationdate><title>Three genes under different developmental control encode elongation factor 1-α in Xenopus laevis</title><author>DJE, M. K ; MAZABRAUD, A ; VIEL, A ; LE MAIRE, M ; DENIS, H ; CRAWFORD, E ; BROWN, D. D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-6cbcbe4a0f2d236d9100cdb4f6385ab8eee177e387c3d4942c209e996d8c167c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Blotting, Northern</topic><topic>Cloning, Molecular</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation</topic><topic>Genes</topic><topic>Genes. Genome</topic><topic>Liver - metabolism</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecular Sequence Data</topic><topic>Oocytes - metabolism</topic><topic>Peptide Elongation Factor 1</topic><topic>Peptide Elongation Factors - biosynthesis</topic><topic>Peptide Elongation Factors - genetics</topic><topic>Ribonucleoproteins - genetics</topic><topic>Sequence Homology, Nucleic Acid</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DJE, M. K</creatorcontrib><creatorcontrib>MAZABRAUD, A</creatorcontrib><creatorcontrib>VIEL, A</creatorcontrib><creatorcontrib>LE MAIRE, M</creatorcontrib><creatorcontrib>DENIS, H</creatorcontrib><creatorcontrib>CRAWFORD, E</creatorcontrib><creatorcontrib>BROWN, D. D</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biochemistry Abstracts 3</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DJE, M. K</au><au>MAZABRAUD, A</au><au>VIEL, A</au><au>LE MAIRE, M</au><au>DENIS, H</au><au>CRAWFORD, E</au><au>BROWN, D. D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three genes under different developmental control encode elongation factor 1-α in Xenopus laevis</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>1990-06-25</date><risdate>1990</risdate><volume>18</volume><issue>12</issue><spage>3489</spage><epage>3493</epage><pages>3489-3493</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>We have cloned cDNAs encoding two variants of the elongation factor for protein synthesis in Xenopus laevis, called EF-1 alpha. One of these (42Sp50) is expressed exclusively in immature oocytes. It is one of two protein components of a 42S RNP particle that is very abundant in previtellogenic oocytes. The 42S RNP particle consists of various tRNAs, 5S RNA, 42Sp50 and a 5S RNA binding protein (42Sp43). A major function served by 42Sp50 appears to be the storage of tRNAs for later use in oogenesis and early embryogenesis. The second EF-1 alpha variant (EF-1 alpha O) is expressed mainly in oocytes but transiently in early embryogenesis as well. Its mRNA cannot be detected after neurulation in somatic cells. EF-1 alpha O is closely related to a third EF-1 alpha (EF-1 alpha S), discovered originally by Krieg et al. (1). EF-1 alpha S is expressed at low levels in oocytes but actively in somatic cells. The latter two proteins are very similar to known eukaryotic EF-1 alpha from other organisms and presumably function in their respective cell types to support protein synthesis.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>2362804</pmid><doi>10.1093/nar/18.12.3489</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 1990-06, Vol.18 (12), p.3489-3493 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_331001 |
source | MEDLINE; PubMed Central; Oxford University Press Journals Digital Archive Legacy |
subjects | Amino Acid Sequence Animals Base Sequence Biological and medical sciences Blotting, Northern Cloning, Molecular Fundamental and applied biological sciences. Psychology Gene Expression Regulation Genes Genes. Genome Liver - metabolism Molecular and cellular biology Molecular genetics Molecular Sequence Data Oocytes - metabolism Peptide Elongation Factor 1 Peptide Elongation Factors - biosynthesis Peptide Elongation Factors - genetics Ribonucleoproteins - genetics Sequence Homology, Nucleic Acid Xenopus laevis |
title | Three genes under different developmental control encode elongation factor 1-α in Xenopus laevis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A07%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%20genes%20under%20different%20developmental%20control%20encode%20elongation%20factor%201-%CE%B1%20in%20Xenopus%20laevis&rft.jtitle=Nucleic%20acids%20research&rft.au=DJE,%20M.%20K&rft.date=1990-06-25&rft.volume=18&rft.issue=12&rft.spage=3489&rft.epage=3493&rft.pages=3489-3493&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/18.12.3489&rft_dat=%3Cproquest_pubme%3E19623306%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15999826&rft_id=info:pmid/2362804&rfr_iscdi=true |