Ball and rackets: Inferring fiber fanning from diffusion-weighted MRI
A number of methods have been proposed for resolving crossing fibers from diffusion-weighted (DW) MRI. However, other complex fiber geometries have drawn minimal attention. In this study, we focus on fiber orientation dispersion induced by within-voxel fanning. We use a multi-compartment, model-base...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2012-04, Vol.60 (2), p.1412-1425 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1425 |
---|---|
container_issue | 2 |
container_start_page | 1412 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 60 |
creator | Sotiropoulos, Stamatios N. Behrens, Timothy E.J. Jbabdi, Saad |
description | A number of methods have been proposed for resolving crossing fibers from diffusion-weighted (DW) MRI. However, other complex fiber geometries have drawn minimal attention. In this study, we focus on fiber orientation dispersion induced by within-voxel fanning. We use a multi-compartment, model-based approach to estimate fiber dispersion. Bingham distributions are employed to represent continuous distributions of fiber orientations, centered around a main orientation, and capturing anisotropic dispersion. We evaluate the accuracy of the model for different simulated fanning geometries, under different acquisition protocols and we illustrate the high SNR and angular resolution needs. We also perform a qualitative comparison between our parametric approach and five popular non-parametric techniques that are based on orientation distribution functions (ODFs). This comparison illustrates how the same underlying geometry can be depicted by different methods. We apply the proposed model on high-quality, post-mortem macaque data and present whole-brain maps of fiber dispersion, as well as exquisite details on the local anatomy of fiber distributions in various white matter regions.
► An approach to estimate fibre orientation dispersion from DW-MRI data is proposed. ► The model accounts for within-voxel fibre fanning and bending. ► Using extensive simulations, we show the model robustness against data quality. ► We also compare our approach to several other non-parametric strategies. ► We illustrate fine details uncovered by this model on a post-mortem macaque dataset. |
doi_str_mv | 10.1016/j.neuroimage.2012.01.056 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3304013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811912000730</els_id><sourcerecordid>928375674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-fa2c39b1eefd71c1491dd14f67435c12186a95369a2202f70fed5626e9b4453a3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EomXLV0CROHBK8NixE3NAolVpVyqqhOjZ8trjrZesXeykFd-ebLeUP5eePJZ_8zzzHiEV0AYoyPebJuKUU9iaNTaMAmsoNFTIZ-QQqBK1Eh17vqsFr3sAdUBelbKhlCpo-5fkgDHWUS7gkJwem2GoTHRVNvY7juVDtYwecw5xXfmwwlx5E-P9Ladt5YL3Uwkp1ncY1tcjuurL1-UReeHNUPD1w7kgV59Pv52c1xeXZ8uTTxe1Fbwfa2-Y5WoFiN51YKFV4By0XnYtFxYY9NIowaUyjFHmO-rRCckkqlXbCm74gnzc695Mqy06i3HMZtA3eXYi_9TJBP3vSwzXep1uNee0pcBngXcPAjn9mLCMehuKxWEwEdNUtJI9dIpJ9TTJet6J3eQL8vY_cpOmHGcfNAgqe9lTKmeq31M2p1Iy-sepgepdqHqj_4Sqd6FqCnoOdW598_fWj42_U5yB4z2As_e3AbMuNmC06EJGO2qXwtO__AKwDrdr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506868006</pqid></control><display><type>article</type><title>Ball and rackets: Inferring fiber fanning from diffusion-weighted MRI</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Sotiropoulos, Stamatios N. ; Behrens, Timothy E.J. ; Jbabdi, Saad</creator><creatorcontrib>Sotiropoulos, Stamatios N. ; Behrens, Timothy E.J. ; Jbabdi, Saad</creatorcontrib><description>A number of methods have been proposed for resolving crossing fibers from diffusion-weighted (DW) MRI. However, other complex fiber geometries have drawn minimal attention. In this study, we focus on fiber orientation dispersion induced by within-voxel fanning. We use a multi-compartment, model-based approach to estimate fiber dispersion. Bingham distributions are employed to represent continuous distributions of fiber orientations, centered around a main orientation, and capturing anisotropic dispersion. We evaluate the accuracy of the model for different simulated fanning geometries, under different acquisition protocols and we illustrate the high SNR and angular resolution needs. We also perform a qualitative comparison between our parametric approach and five popular non-parametric techniques that are based on orientation distribution functions (ODFs). This comparison illustrates how the same underlying geometry can be depicted by different methods. We apply the proposed model on high-quality, post-mortem macaque data and present whole-brain maps of fiber dispersion, as well as exquisite details on the local anatomy of fiber distributions in various white matter regions.
► An approach to estimate fibre orientation dispersion from DW-MRI data is proposed. ► The model accounts for within-voxel fibre fanning and bending. ► Using extensive simulations, we show the model robustness against data quality. ► We also compare our approach to several other non-parametric strategies. ► We illustrate fine details uncovered by this model on a post-mortem macaque dataset.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2012.01.056</identifier><identifier>PMID: 22270351</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Animals ; Bingham distribution ; Brain - anatomy & histology ; Diffusion ; Diffusion Magnetic Resonance Imaging ; Diffusion MRI ; Estimates ; Fiber bending ; Fiber fanning ; Macaca ; Macaque ; Models, Biological ; Nerve Fibers ; Parametric deconvolution ; Regularization methods ; White matter</subject><ispartof>NeuroImage (Orlando, Fla.), 2012-04, Vol.60 (2), p.1412-1425</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Apr 2, 2012</rights><rights>2012 Elsevier Inc. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-fa2c39b1eefd71c1491dd14f67435c12186a95369a2202f70fed5626e9b4453a3</citedby><cites>FETCH-LOGICAL-c538t-fa2c39b1eefd71c1491dd14f67435c12186a95369a2202f70fed5626e9b4453a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1506868006?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22270351$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sotiropoulos, Stamatios N.</creatorcontrib><creatorcontrib>Behrens, Timothy E.J.</creatorcontrib><creatorcontrib>Jbabdi, Saad</creatorcontrib><title>Ball and rackets: Inferring fiber fanning from diffusion-weighted MRI</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>A number of methods have been proposed for resolving crossing fibers from diffusion-weighted (DW) MRI. However, other complex fiber geometries have drawn minimal attention. In this study, we focus on fiber orientation dispersion induced by within-voxel fanning. We use a multi-compartment, model-based approach to estimate fiber dispersion. Bingham distributions are employed to represent continuous distributions of fiber orientations, centered around a main orientation, and capturing anisotropic dispersion. We evaluate the accuracy of the model for different simulated fanning geometries, under different acquisition protocols and we illustrate the high SNR and angular resolution needs. We also perform a qualitative comparison between our parametric approach and five popular non-parametric techniques that are based on orientation distribution functions (ODFs). This comparison illustrates how the same underlying geometry can be depicted by different methods. We apply the proposed model on high-quality, post-mortem macaque data and present whole-brain maps of fiber dispersion, as well as exquisite details on the local anatomy of fiber distributions in various white matter regions.
► An approach to estimate fibre orientation dispersion from DW-MRI data is proposed. ► The model accounts for within-voxel fibre fanning and bending. ► Using extensive simulations, we show the model robustness against data quality. ► We also compare our approach to several other non-parametric strategies. ► We illustrate fine details uncovered by this model on a post-mortem macaque dataset.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Bingham distribution</subject><subject>Brain - anatomy & histology</subject><subject>Diffusion</subject><subject>Diffusion Magnetic Resonance Imaging</subject><subject>Diffusion MRI</subject><subject>Estimates</subject><subject>Fiber bending</subject><subject>Fiber fanning</subject><subject>Macaca</subject><subject>Macaque</subject><subject>Models, Biological</subject><subject>Nerve Fibers</subject><subject>Parametric deconvolution</subject><subject>Regularization methods</subject><subject>White matter</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU9v1DAQxS0EomXLV0CROHBK8NixE3NAolVpVyqqhOjZ8trjrZesXeykFd-ebLeUP5eePJZ_8zzzHiEV0AYoyPebJuKUU9iaNTaMAmsoNFTIZ-QQqBK1Eh17vqsFr3sAdUBelbKhlCpo-5fkgDHWUS7gkJwem2GoTHRVNvY7juVDtYwecw5xXfmwwlx5E-P9Ladt5YL3Uwkp1ncY1tcjuurL1-UReeHNUPD1w7kgV59Pv52c1xeXZ8uTTxe1Fbwfa2-Y5WoFiN51YKFV4By0XnYtFxYY9NIowaUyjFHmO-rRCckkqlXbCm74gnzc695Mqy06i3HMZtA3eXYi_9TJBP3vSwzXep1uNee0pcBngXcPAjn9mLCMehuKxWEwEdNUtJI9dIpJ9TTJet6J3eQL8vY_cpOmHGcfNAgqe9lTKmeq31M2p1Iy-sepgepdqHqj_4Sqd6FqCnoOdW598_fWj42_U5yB4z2As_e3AbMuNmC06EJGO2qXwtO__AKwDrdr</recordid><startdate>20120402</startdate><enddate>20120402</enddate><creator>Sotiropoulos, Stamatios N.</creator><creator>Behrens, Timothy E.J.</creator><creator>Jbabdi, Saad</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope><scope>5PM</scope></search><sort><creationdate>20120402</creationdate><title>Ball and rackets: Inferring fiber fanning from diffusion-weighted MRI</title><author>Sotiropoulos, Stamatios N. ; Behrens, Timothy E.J. ; Jbabdi, Saad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-fa2c39b1eefd71c1491dd14f67435c12186a95369a2202f70fed5626e9b4453a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Bingham distribution</topic><topic>Brain - anatomy & histology</topic><topic>Diffusion</topic><topic>Diffusion Magnetic Resonance Imaging</topic><topic>Diffusion MRI</topic><topic>Estimates</topic><topic>Fiber bending</topic><topic>Fiber fanning</topic><topic>Macaca</topic><topic>Macaque</topic><topic>Models, Biological</topic><topic>Nerve Fibers</topic><topic>Parametric deconvolution</topic><topic>Regularization methods</topic><topic>White matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sotiropoulos, Stamatios N.</creatorcontrib><creatorcontrib>Behrens, Timothy E.J.</creatorcontrib><creatorcontrib>Jbabdi, Saad</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sotiropoulos, Stamatios N.</au><au>Behrens, Timothy E.J.</au><au>Jbabdi, Saad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ball and rackets: Inferring fiber fanning from diffusion-weighted MRI</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2012-04-02</date><risdate>2012</risdate><volume>60</volume><issue>2</issue><spage>1412</spage><epage>1425</epage><pages>1412-1425</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>A number of methods have been proposed for resolving crossing fibers from diffusion-weighted (DW) MRI. However, other complex fiber geometries have drawn minimal attention. In this study, we focus on fiber orientation dispersion induced by within-voxel fanning. We use a multi-compartment, model-based approach to estimate fiber dispersion. Bingham distributions are employed to represent continuous distributions of fiber orientations, centered around a main orientation, and capturing anisotropic dispersion. We evaluate the accuracy of the model for different simulated fanning geometries, under different acquisition protocols and we illustrate the high SNR and angular resolution needs. We also perform a qualitative comparison between our parametric approach and five popular non-parametric techniques that are based on orientation distribution functions (ODFs). This comparison illustrates how the same underlying geometry can be depicted by different methods. We apply the proposed model on high-quality, post-mortem macaque data and present whole-brain maps of fiber dispersion, as well as exquisite details on the local anatomy of fiber distributions in various white matter regions.
► An approach to estimate fibre orientation dispersion from DW-MRI data is proposed. ► The model accounts for within-voxel fibre fanning and bending. ► Using extensive simulations, we show the model robustness against data quality. ► We also compare our approach to several other non-parametric strategies. ► We illustrate fine details uncovered by this model on a post-mortem macaque dataset.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22270351</pmid><doi>10.1016/j.neuroimage.2012.01.056</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2012-04, Vol.60 (2), p.1412-1425 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3304013 |
source | MEDLINE; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland |
subjects | Algorithms Animals Bingham distribution Brain - anatomy & histology Diffusion Diffusion Magnetic Resonance Imaging Diffusion MRI Estimates Fiber bending Fiber fanning Macaca Macaque Models, Biological Nerve Fibers Parametric deconvolution Regularization methods White matter |
title | Ball and rackets: Inferring fiber fanning from diffusion-weighted MRI |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A44%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ball%20and%20rackets:%20Inferring%20fiber%20fanning%20from%20diffusion-weighted%20MRI&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Sotiropoulos,%20Stamatios%20N.&rft.date=2012-04-02&rft.volume=60&rft.issue=2&rft.spage=1412&rft.epage=1425&rft.pages=1412-1425&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2012.01.056&rft_dat=%3Cproquest_pubme%3E928375674%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506868006&rft_id=info:pmid/22270351&rft_els_id=S1053811912000730&rfr_iscdi=true |