Nonsense mutations in the COX1 subunit impair the stability of respiratory chain complexes rather than their assembly

Respiratory chain (RC) complexes are organized into supercomplexes forming ‘respirasomes’. The mechanism underlying the interdependence of individual complexes is still unclear. Here, we show in human patient cells that the presence of a truncated COX1 subunit leads to destabilization of complex IV...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2012-03, Vol.31 (5), p.1293-1307
Hauptverfasser: Hornig-Do, Hue-Tran, Tatsuta, Takashi, Buckermann, Angela, Bust, Maria, Kollberg, Gittan, Rötig, Agnes, Hellmich, Martin, Nijtmans, Leo, Wiesner, Rudolf J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1307
container_issue 5
container_start_page 1293
container_title The EMBO journal
container_volume 31
creator Hornig-Do, Hue-Tran
Tatsuta, Takashi
Buckermann, Angela
Bust, Maria
Kollberg, Gittan
Rötig, Agnes
Hellmich, Martin
Nijtmans, Leo
Wiesner, Rudolf J
description Respiratory chain (RC) complexes are organized into supercomplexes forming ‘respirasomes’. The mechanism underlying the interdependence of individual complexes is still unclear. Here, we show in human patient cells that the presence of a truncated COX1 subunit leads to destabilization of complex IV (CIV) and other RC complexes. Surprisingly, the truncated COX1 protein is integrated into subcomplexes, the holocomplex and even into supercomplexes, which however are all unstable. Depletion of the m ‐AAA protease AFG3L2 increases stability of the truncated COX1 and other mitochondrially encoded proteins, whereas overexpression of wild‐type AFG3L2 decreases their stability. Both full‐length and truncated COX1 proteins physically interact with AFG3L2. Expression of a dominant negative AFG3L2 variant also promotes stabilization of CIV proteins as well as the assembled complex and rescues the severe phenotype in heteroplasmic cells. Our data indicate that the mechanism underlying pathogenesis in these patients is the rapid clearance of unstable respiratory complexes by quality control pathways, rather than their impaired assembly. Respiratory chain complexes are organized into supercomplexes. Patient cell lines expressing a truncated COX1 subunit point to an m‐AAA protease‐dependent quality control pathway that clears unstable respiratory complexes that are still capable to assemble into supercomplexes.
doi_str_mv 10.1038/emboj.2011.477
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3297988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2679354171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5047-e65609f7499b3913c1bbdf13905e2f9f01584529bbf34c2a19ee790ac11f95d83</originalsourceid><addsrcrecordid>eNptkc1v0zAYxi0EYqVw5YgsceCUzq8dx_EFCaoxQFsnIRBoF8tJndUliYvtwPLf47SjGgjJkv1-_F4_9oPQcyALIKw8NV3ltgtKABa5EA_QDPKCZJQI_hDNCC0gy6GUJ-hJCFtCCC8FPEYnlFJOgZEZGlauDyYt3A1RR5sibHscNwYvr74BDkM19DZi2-209ft8iLqyrY0jdg32Juys19H5EdcbndDadbvW3JqAU3pjJkbvByZch5AEt-NT9KjRbTDP7vY5-vLu7PPyfXZxdf5h-eYiqznJRWYKXhDZiFzKiklgNVTVugEmCTe0kQ0BXuacyqpqWF5TDdIYIYmuARrJ1yWbo9eHubuh6sy6Nn30ulU7bzvtR-W0VX9XertRN-6nYlQKWU4DXt0N8O7HYEJUnQ21aVvdGzcEJWlRCgHpL-fo5T-dWzf4Pr1OAYGykEWR09T14r6go5I_hqQGcWj4ZVszHutA1GS32tutJrtVsludXb79OAXpnMjTAxkS1N8Yf1_A_-hEZAfChmhuj3dp_10Vggmuvq7O1XVJVnC5_KSu2W9C1b9p</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1018696642</pqid></control><display><type>article</type><title>Nonsense mutations in the COX1 subunit impair the stability of respiratory chain complexes rather than their assembly</title><source>Springer Nature OA Free Journals</source><creator>Hornig-Do, Hue-Tran ; Tatsuta, Takashi ; Buckermann, Angela ; Bust, Maria ; Kollberg, Gittan ; Rötig, Agnes ; Hellmich, Martin ; Nijtmans, Leo ; Wiesner, Rudolf J</creator><creatorcontrib>Hornig-Do, Hue-Tran ; Tatsuta, Takashi ; Buckermann, Angela ; Bust, Maria ; Kollberg, Gittan ; Rötig, Agnes ; Hellmich, Martin ; Nijtmans, Leo ; Wiesner, Rudolf J</creatorcontrib><description>Respiratory chain (RC) complexes are organized into supercomplexes forming ‘respirasomes’. The mechanism underlying the interdependence of individual complexes is still unclear. Here, we show in human patient cells that the presence of a truncated COX1 subunit leads to destabilization of complex IV (CIV) and other RC complexes. Surprisingly, the truncated COX1 protein is integrated into subcomplexes, the holocomplex and even into supercomplexes, which however are all unstable. Depletion of the m ‐AAA protease AFG3L2 increases stability of the truncated COX1 and other mitochondrially encoded proteins, whereas overexpression of wild‐type AFG3L2 decreases their stability. Both full‐length and truncated COX1 proteins physically interact with AFG3L2. Expression of a dominant negative AFG3L2 variant also promotes stabilization of CIV proteins as well as the assembled complex and rescues the severe phenotype in heteroplasmic cells. Our data indicate that the mechanism underlying pathogenesis in these patients is the rapid clearance of unstable respiratory complexes by quality control pathways, rather than their impaired assembly. Respiratory chain complexes are organized into supercomplexes. Patient cell lines expressing a truncated COX1 subunit point to an m‐AAA protease‐dependent quality control pathway that clears unstable respiratory complexes that are still capable to assemble into supercomplexes.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1038/emboj.2011.477</identifier><identifier>PMID: 22252130</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>assembly ; ATP-Dependent Proteases - metabolism ; ATPases Associated with Diverse Cellular Activities ; Cells, Cultured ; Cellular biology ; Codon, Nonsense ; Cyclooxygenase 1 - chemistry ; Cyclooxygenase 1 - genetics ; Cyclooxygenase 1 - metabolism ; degradation ; Electron Transport ; Electron Transport Complex IV - chemistry ; Electron Transport Complex IV - metabolism ; EMBO20 ; EMBO24 ; Enzyme Stability ; Genotype &amp; phenotype ; Humans ; Mitochondria ; mitochondrial disease ; Molecular biology ; Mutation ; Protein Binding ; Protein Interaction Mapping ; Protein Multimerization ; Proteins ; Quality control ; supercomplexes</subject><ispartof>The EMBO journal, 2012-03, Vol.31 (5), p.1293-1307</ispartof><rights>European Molecular Biology Organization 2012</rights><rights>Copyright © 2012 European Molecular Biology Organization</rights><rights>Copyright Nature Publishing Group Mar 7, 2012</rights><rights>Copyright © 2012, European Molecular Biology Organization 2012 European Molecular Biology Organization</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5047-e65609f7499b3913c1bbdf13905e2f9f01584529bbf34c2a19ee790ac11f95d83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3297988/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3297988/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/emboj.2011.477$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22252130$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hornig-Do, Hue-Tran</creatorcontrib><creatorcontrib>Tatsuta, Takashi</creatorcontrib><creatorcontrib>Buckermann, Angela</creatorcontrib><creatorcontrib>Bust, Maria</creatorcontrib><creatorcontrib>Kollberg, Gittan</creatorcontrib><creatorcontrib>Rötig, Agnes</creatorcontrib><creatorcontrib>Hellmich, Martin</creatorcontrib><creatorcontrib>Nijtmans, Leo</creatorcontrib><creatorcontrib>Wiesner, Rudolf J</creatorcontrib><title>Nonsense mutations in the COX1 subunit impair the stability of respiratory chain complexes rather than their assembly</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Respiratory chain (RC) complexes are organized into supercomplexes forming ‘respirasomes’. The mechanism underlying the interdependence of individual complexes is still unclear. Here, we show in human patient cells that the presence of a truncated COX1 subunit leads to destabilization of complex IV (CIV) and other RC complexes. Surprisingly, the truncated COX1 protein is integrated into subcomplexes, the holocomplex and even into supercomplexes, which however are all unstable. Depletion of the m ‐AAA protease AFG3L2 increases stability of the truncated COX1 and other mitochondrially encoded proteins, whereas overexpression of wild‐type AFG3L2 decreases their stability. Both full‐length and truncated COX1 proteins physically interact with AFG3L2. Expression of a dominant negative AFG3L2 variant also promotes stabilization of CIV proteins as well as the assembled complex and rescues the severe phenotype in heteroplasmic cells. Our data indicate that the mechanism underlying pathogenesis in these patients is the rapid clearance of unstable respiratory complexes by quality control pathways, rather than their impaired assembly. Respiratory chain complexes are organized into supercomplexes. Patient cell lines expressing a truncated COX1 subunit point to an m‐AAA protease‐dependent quality control pathway that clears unstable respiratory complexes that are still capable to assemble into supercomplexes.</description><subject>assembly</subject><subject>ATP-Dependent Proteases - metabolism</subject><subject>ATPases Associated with Diverse Cellular Activities</subject><subject>Cells, Cultured</subject><subject>Cellular biology</subject><subject>Codon, Nonsense</subject><subject>Cyclooxygenase 1 - chemistry</subject><subject>Cyclooxygenase 1 - genetics</subject><subject>Cyclooxygenase 1 - metabolism</subject><subject>degradation</subject><subject>Electron Transport</subject><subject>Electron Transport Complex IV - chemistry</subject><subject>Electron Transport Complex IV - metabolism</subject><subject>EMBO20</subject><subject>EMBO24</subject><subject>Enzyme Stability</subject><subject>Genotype &amp; phenotype</subject><subject>Humans</subject><subject>Mitochondria</subject><subject>mitochondrial disease</subject><subject>Molecular biology</subject><subject>Mutation</subject><subject>Protein Binding</subject><subject>Protein Interaction Mapping</subject><subject>Protein Multimerization</subject><subject>Proteins</subject><subject>Quality control</subject><subject>supercomplexes</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkc1v0zAYxi0EYqVw5YgsceCUzq8dx_EFCaoxQFsnIRBoF8tJndUliYvtwPLf47SjGgjJkv1-_F4_9oPQcyALIKw8NV3ltgtKABa5EA_QDPKCZJQI_hDNCC0gy6GUJ-hJCFtCCC8FPEYnlFJOgZEZGlauDyYt3A1RR5sibHscNwYvr74BDkM19DZi2-209ft8iLqyrY0jdg32Juys19H5EdcbndDadbvW3JqAU3pjJkbvByZch5AEt-NT9KjRbTDP7vY5-vLu7PPyfXZxdf5h-eYiqznJRWYKXhDZiFzKiklgNVTVugEmCTe0kQ0BXuacyqpqWF5TDdIYIYmuARrJ1yWbo9eHubuh6sy6Nn30ulU7bzvtR-W0VX9XertRN-6nYlQKWU4DXt0N8O7HYEJUnQ21aVvdGzcEJWlRCgHpL-fo5T-dWzf4Pr1OAYGykEWR09T14r6go5I_hqQGcWj4ZVszHutA1GS32tutJrtVsludXb79OAXpnMjTAxkS1N8Yf1_A_-hEZAfChmhuj3dp_10Vggmuvq7O1XVJVnC5_KSu2W9C1b9p</recordid><startdate>20120307</startdate><enddate>20120307</enddate><creator>Hornig-Do, Hue-Tran</creator><creator>Tatsuta, Takashi</creator><creator>Buckermann, Angela</creator><creator>Bust, Maria</creator><creator>Kollberg, Gittan</creator><creator>Rötig, Agnes</creator><creator>Hellmich, Martin</creator><creator>Nijtmans, Leo</creator><creator>Wiesner, Rudolf J</creator><general>John Wiley &amp; Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120307</creationdate><title>Nonsense mutations in the COX1 subunit impair the stability of respiratory chain complexes rather than their assembly</title><author>Hornig-Do, Hue-Tran ; Tatsuta, Takashi ; Buckermann, Angela ; Bust, Maria ; Kollberg, Gittan ; Rötig, Agnes ; Hellmich, Martin ; Nijtmans, Leo ; Wiesner, Rudolf J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5047-e65609f7499b3913c1bbdf13905e2f9f01584529bbf34c2a19ee790ac11f95d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>assembly</topic><topic>ATP-Dependent Proteases - metabolism</topic><topic>ATPases Associated with Diverse Cellular Activities</topic><topic>Cells, Cultured</topic><topic>Cellular biology</topic><topic>Codon, Nonsense</topic><topic>Cyclooxygenase 1 - chemistry</topic><topic>Cyclooxygenase 1 - genetics</topic><topic>Cyclooxygenase 1 - metabolism</topic><topic>degradation</topic><topic>Electron Transport</topic><topic>Electron Transport Complex IV - chemistry</topic><topic>Electron Transport Complex IV - metabolism</topic><topic>EMBO20</topic><topic>EMBO24</topic><topic>Enzyme Stability</topic><topic>Genotype &amp; phenotype</topic><topic>Humans</topic><topic>Mitochondria</topic><topic>mitochondrial disease</topic><topic>Molecular biology</topic><topic>Mutation</topic><topic>Protein Binding</topic><topic>Protein Interaction Mapping</topic><topic>Protein Multimerization</topic><topic>Proteins</topic><topic>Quality control</topic><topic>supercomplexes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hornig-Do, Hue-Tran</creatorcontrib><creatorcontrib>Tatsuta, Takashi</creatorcontrib><creatorcontrib>Buckermann, Angela</creatorcontrib><creatorcontrib>Bust, Maria</creatorcontrib><creatorcontrib>Kollberg, Gittan</creatorcontrib><creatorcontrib>Rötig, Agnes</creatorcontrib><creatorcontrib>Hellmich, Martin</creatorcontrib><creatorcontrib>Nijtmans, Leo</creatorcontrib><creatorcontrib>Wiesner, Rudolf J</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hornig-Do, Hue-Tran</au><au>Tatsuta, Takashi</au><au>Buckermann, Angela</au><au>Bust, Maria</au><au>Kollberg, Gittan</au><au>Rötig, Agnes</au><au>Hellmich, Martin</au><au>Nijtmans, Leo</au><au>Wiesner, Rudolf J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonsense mutations in the COX1 subunit impair the stability of respiratory chain complexes rather than their assembly</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2012-03-07</date><risdate>2012</risdate><volume>31</volume><issue>5</issue><spage>1293</spage><epage>1307</epage><pages>1293-1307</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Respiratory chain (RC) complexes are organized into supercomplexes forming ‘respirasomes’. The mechanism underlying the interdependence of individual complexes is still unclear. Here, we show in human patient cells that the presence of a truncated COX1 subunit leads to destabilization of complex IV (CIV) and other RC complexes. Surprisingly, the truncated COX1 protein is integrated into subcomplexes, the holocomplex and even into supercomplexes, which however are all unstable. Depletion of the m ‐AAA protease AFG3L2 increases stability of the truncated COX1 and other mitochondrially encoded proteins, whereas overexpression of wild‐type AFG3L2 decreases their stability. Both full‐length and truncated COX1 proteins physically interact with AFG3L2. Expression of a dominant negative AFG3L2 variant also promotes stabilization of CIV proteins as well as the assembled complex and rescues the severe phenotype in heteroplasmic cells. Our data indicate that the mechanism underlying pathogenesis in these patients is the rapid clearance of unstable respiratory complexes by quality control pathways, rather than their impaired assembly. Respiratory chain complexes are organized into supercomplexes. Patient cell lines expressing a truncated COX1 subunit point to an m‐AAA protease‐dependent quality control pathway that clears unstable respiratory complexes that are still capable to assemble into supercomplexes.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>22252130</pmid><doi>10.1038/emboj.2011.477</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2012-03, Vol.31 (5), p.1293-1307
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3297988
source Springer Nature OA Free Journals
subjects assembly
ATP-Dependent Proteases - metabolism
ATPases Associated with Diverse Cellular Activities
Cells, Cultured
Cellular biology
Codon, Nonsense
Cyclooxygenase 1 - chemistry
Cyclooxygenase 1 - genetics
Cyclooxygenase 1 - metabolism
degradation
Electron Transport
Electron Transport Complex IV - chemistry
Electron Transport Complex IV - metabolism
EMBO20
EMBO24
Enzyme Stability
Genotype & phenotype
Humans
Mitochondria
mitochondrial disease
Molecular biology
Mutation
Protein Binding
Protein Interaction Mapping
Protein Multimerization
Proteins
Quality control
supercomplexes
title Nonsense mutations in the COX1 subunit impair the stability of respiratory chain complexes rather than their assembly
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T12%3A48%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonsense%20mutations%20in%20the%20COX1%20subunit%20impair%20the%20stability%20of%20respiratory%20chain%20complexes%20rather%20than%20their%20assembly&rft.jtitle=The%20EMBO%20journal&rft.au=Hornig-Do,%20Hue-Tran&rft.date=2012-03-07&rft.volume=31&rft.issue=5&rft.spage=1293&rft.epage=1307&rft.pages=1293-1307&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1038/emboj.2011.477&rft_dat=%3Cproquest_C6C%3E2679354171%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1018696642&rft_id=info:pmid/22252130&rfr_iscdi=true