How to cluster gene expression dynamics in response to environmental signals
Organisms usually cope with change in the environment by altering the dynamic trajectory of gene expression to adjust the complement of active proteins. The identification of particular sets of genes whose expression is adaptive in response to environmental changes helps to understand the mechanisti...
Gespeichert in:
Veröffentlicht in: | Briefings in bioinformatics 2012-03, Vol.13 (2), p.162-174 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 174 |
---|---|
container_issue | 2 |
container_start_page | 162 |
container_title | Briefings in bioinformatics |
container_volume | 13 |
creator | YAQUN WANG MENG XU ZHONG WANG MING TAO JUNJIA ZHU LI WANG RUNZE LI BERCELI, Scott A RONGLING WU |
description | Organisms usually cope with change in the environment by altering the dynamic trajectory of gene expression to adjust the complement of active proteins. The identification of particular sets of genes whose expression is adaptive in response to environmental changes helps to understand the mechanistic base of gene-environment interactions essential for organismic development. We describe a computational framework for clustering the dynamics of gene expression in distinct environments through Gaussian mixture fitting to the expression data measured at a set of discrete time points. We outline a number of quantitative testable hypotheses about the patterns of dynamic gene expression in changing environments and gene-environment interactions causing developmental differentiation. The future directions of gene clustering in terms of incorporations of the latest biological discoveries and statistical innovations are discussed. We provide a set of computational tools that are applicable to modeling and analysis of dynamic gene expression data measured in multiple environments. |
doi_str_mv | 10.1093/bib/bbr032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3294239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>968165267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-14e952db18d9b53bbc345092de1f0c9740a2058593e4d0d9589498337bf8f8cb3</originalsourceid><addsrcrecordid>eNqF0UtrFTEUB_BQlL504weQQSgFYdq8HxtBSmsLF7qp65BkMteUmeSazFT77Zvh3lbtxtUJyY_DOfkD8AHBMwQVObfBnlubIcF74BBRIVoKGX2znLloGeXkAByVcg8hhkKifXCAkaCcK3oIVtfpVzOlxg1zmXxu1j76xv_eZF9KSLHpHqMZgytNiE2926RY_OJ9fAg5xdHHyQxNCetohvIOvO1r8e939Rh8v7q8u7huV7ffbi6-rlrHCJ5aRL1iuLNIdsoyYq0jlEGFO4966JSg0GDIJFPE0w52iklFlSRE2F720llyDL5s-25mO_rO1SGyGfQmh9HkR51M0P--xPBDr9ODJlhRTFRtcLprkNPP2ZdJj6E4Pwwm-jQXrbhEnGEu_i8xl0JAiqr89Erepzkv31KRYJJgvqDPW-RyKiX7_mVoBPUSpq5h6m2YFX_8e80X-pxeBSc7YIozQ59NdKH8cYwJhbEiTzmiqKk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>927583261</pqid></control><display><type>article</type><title>How to cluster gene expression dynamics in response to environmental signals</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Business Source Complete</source><source>PubMed Central</source><creator>YAQUN WANG ; MENG XU ; ZHONG WANG ; MING TAO ; JUNJIA ZHU ; LI WANG ; RUNZE LI ; BERCELI, Scott A ; RONGLING WU</creator><creatorcontrib>YAQUN WANG ; MENG XU ; ZHONG WANG ; MING TAO ; JUNJIA ZHU ; LI WANG ; RUNZE LI ; BERCELI, Scott A ; RONGLING WU</creatorcontrib><description>Organisms usually cope with change in the environment by altering the dynamic trajectory of gene expression to adjust the complement of active proteins. The identification of particular sets of genes whose expression is adaptive in response to environmental changes helps to understand the mechanistic base of gene-environment interactions essential for organismic development. We describe a computational framework for clustering the dynamics of gene expression in distinct environments through Gaussian mixture fitting to the expression data measured at a set of discrete time points. We outline a number of quantitative testable hypotheses about the patterns of dynamic gene expression in changing environments and gene-environment interactions causing developmental differentiation. The future directions of gene clustering in terms of incorporations of the latest biological discoveries and statistical innovations are discussed. We provide a set of computational tools that are applicable to modeling and analysis of dynamic gene expression data measured in multiple environments.</description><identifier>ISSN: 1467-5463</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbr032</identifier><identifier>PMID: 21746694</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Algorithms ; Biological and medical sciences ; Cell Differentiation ; Cluster Analysis ; Computer Simulation ; Databases, Genetic ; Fundamental and applied biological sciences. Psychology ; Gene Expression ; Gene Expression Profiling - methods ; Gene-Environment Interaction ; General aspects ; Identification ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Normal distribution ; Proteins</subject><ispartof>Briefings in bioinformatics, 2012-03, Vol.13 (2), p.162-174</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright Oxford Publishing Limited(England) Mar 2012</rights><rights>The Author 2011. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-14e952db18d9b53bbc345092de1f0c9740a2058593e4d0d9589498337bf8f8cb3</citedby><cites>FETCH-LOGICAL-c532t-14e952db18d9b53bbc345092de1f0c9740a2058593e4d0d9589498337bf8f8cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3294239/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3294239/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25579229$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21746694$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>YAQUN WANG</creatorcontrib><creatorcontrib>MENG XU</creatorcontrib><creatorcontrib>ZHONG WANG</creatorcontrib><creatorcontrib>MING TAO</creatorcontrib><creatorcontrib>JUNJIA ZHU</creatorcontrib><creatorcontrib>LI WANG</creatorcontrib><creatorcontrib>RUNZE LI</creatorcontrib><creatorcontrib>BERCELI, Scott A</creatorcontrib><creatorcontrib>RONGLING WU</creatorcontrib><title>How to cluster gene expression dynamics in response to environmental signals</title><title>Briefings in bioinformatics</title><addtitle>Brief Bioinform</addtitle><description>Organisms usually cope with change in the environment by altering the dynamic trajectory of gene expression to adjust the complement of active proteins. The identification of particular sets of genes whose expression is adaptive in response to environmental changes helps to understand the mechanistic base of gene-environment interactions essential for organismic development. We describe a computational framework for clustering the dynamics of gene expression in distinct environments through Gaussian mixture fitting to the expression data measured at a set of discrete time points. We outline a number of quantitative testable hypotheses about the patterns of dynamic gene expression in changing environments and gene-environment interactions causing developmental differentiation. The future directions of gene clustering in terms of incorporations of the latest biological discoveries and statistical innovations are discussed. We provide a set of computational tools that are applicable to modeling and analysis of dynamic gene expression data measured in multiple environments.</description><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>Cell Differentiation</subject><subject>Cluster Analysis</subject><subject>Computer Simulation</subject><subject>Databases, Genetic</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene-Environment Interaction</subject><subject>General aspects</subject><subject>Identification</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Normal distribution</subject><subject>Proteins</subject><issn>1467-5463</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0UtrFTEUB_BQlL504weQQSgFYdq8HxtBSmsLF7qp65BkMteUmeSazFT77Zvh3lbtxtUJyY_DOfkD8AHBMwQVObfBnlubIcF74BBRIVoKGX2znLloGeXkAByVcg8hhkKifXCAkaCcK3oIVtfpVzOlxg1zmXxu1j76xv_eZF9KSLHpHqMZgytNiE2926RY_OJ9fAg5xdHHyQxNCetohvIOvO1r8e939Rh8v7q8u7huV7ffbi6-rlrHCJ5aRL1iuLNIdsoyYq0jlEGFO4966JSg0GDIJFPE0w52iklFlSRE2F720llyDL5s-25mO_rO1SGyGfQmh9HkR51M0P--xPBDr9ODJlhRTFRtcLprkNPP2ZdJj6E4Pwwm-jQXrbhEnGEu_i8xl0JAiqr89Erepzkv31KRYJJgvqDPW-RyKiX7_mVoBPUSpq5h6m2YFX_8e80X-pxeBSc7YIozQ59NdKH8cYwJhbEiTzmiqKk</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>YAQUN WANG</creator><creator>MENG XU</creator><creator>ZHONG WANG</creator><creator>MING TAO</creator><creator>JUNJIA ZHU</creator><creator>LI WANG</creator><creator>RUNZE LI</creator><creator>BERCELI, Scott A</creator><creator>RONGLING WU</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120301</creationdate><title>How to cluster gene expression dynamics in response to environmental signals</title><author>YAQUN WANG ; MENG XU ; ZHONG WANG ; MING TAO ; JUNJIA ZHU ; LI WANG ; RUNZE LI ; BERCELI, Scott A ; RONGLING WU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-14e952db18d9b53bbc345092de1f0c9740a2058593e4d0d9589498337bf8f8cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>Cell Differentiation</topic><topic>Cluster Analysis</topic><topic>Computer Simulation</topic><topic>Databases, Genetic</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene-Environment Interaction</topic><topic>General aspects</topic><topic>Identification</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Normal distribution</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>YAQUN WANG</creatorcontrib><creatorcontrib>MENG XU</creatorcontrib><creatorcontrib>ZHONG WANG</creatorcontrib><creatorcontrib>MING TAO</creatorcontrib><creatorcontrib>JUNJIA ZHU</creatorcontrib><creatorcontrib>LI WANG</creatorcontrib><creatorcontrib>RUNZE LI</creatorcontrib><creatorcontrib>BERCELI, Scott A</creatorcontrib><creatorcontrib>RONGLING WU</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>YAQUN WANG</au><au>MENG XU</au><au>ZHONG WANG</au><au>MING TAO</au><au>JUNJIA ZHU</au><au>LI WANG</au><au>RUNZE LI</au><au>BERCELI, Scott A</au><au>RONGLING WU</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to cluster gene expression dynamics in response to environmental signals</atitle><jtitle>Briefings in bioinformatics</jtitle><addtitle>Brief Bioinform</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>13</volume><issue>2</issue><spage>162</spage><epage>174</epage><pages>162-174</pages><issn>1467-5463</issn><eissn>1477-4054</eissn><abstract>Organisms usually cope with change in the environment by altering the dynamic trajectory of gene expression to adjust the complement of active proteins. The identification of particular sets of genes whose expression is adaptive in response to environmental changes helps to understand the mechanistic base of gene-environment interactions essential for organismic development. We describe a computational framework for clustering the dynamics of gene expression in distinct environments through Gaussian mixture fitting to the expression data measured at a set of discrete time points. We outline a number of quantitative testable hypotheses about the patterns of dynamic gene expression in changing environments and gene-environment interactions causing developmental differentiation. The future directions of gene clustering in terms of incorporations of the latest biological discoveries and statistical innovations are discussed. We provide a set of computational tools that are applicable to modeling and analysis of dynamic gene expression data measured in multiple environments.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>21746694</pmid><doi>10.1093/bib/bbr032</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1467-5463 |
ispartof | Briefings in bioinformatics, 2012-03, Vol.13 (2), p.162-174 |
issn | 1467-5463 1477-4054 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3294239 |
source | Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Business Source Complete; PubMed Central |
subjects | Algorithms Biological and medical sciences Cell Differentiation Cluster Analysis Computer Simulation Databases, Genetic Fundamental and applied biological sciences. Psychology Gene Expression Gene Expression Profiling - methods Gene-Environment Interaction General aspects Identification Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Normal distribution Proteins |
title | How to cluster gene expression dynamics in response to environmental signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A02%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20cluster%20gene%20expression%20dynamics%20in%20response%20to%20environmental%20signals&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=YAQUN%20WANG&rft.date=2012-03-01&rft.volume=13&rft.issue=2&rft.spage=162&rft.epage=174&rft.pages=162-174&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbr032&rft_dat=%3Cproquest_pubme%3E968165267%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=927583261&rft_id=info:pmid/21746694&rfr_iscdi=true |