The production of oxygenated polycrystalline graphene by one-step ethanol-chemical vapor deposition

Large-area mono- and bilayer graphene films were synthesized on Cu foil (∼1 in. 2) in about 1 min by a simple ethanol-chemical vapor deposition (CVD) technique. Raman spectroscopy and high resolution transmission electron microscopy revealed the synthesized graphene films to have polycrystalline str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2011-10, Vol.49 (12), p.3789-3795
Hauptverfasser: Paul, Rajat K., Badhulika, Sushmee, Niyogi, Sandip, Haddon, Robert C., Boddu, Veera M., Costales-Nieves, Carmen, Bozhilov, Krassimir N., Mulchandani, Ashok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3795
container_issue 12
container_start_page 3789
container_title Carbon (New York)
container_volume 49
creator Paul, Rajat K.
Badhulika, Sushmee
Niyogi, Sandip
Haddon, Robert C.
Boddu, Veera M.
Costales-Nieves, Carmen
Bozhilov, Krassimir N.
Mulchandani, Ashok
description Large-area mono- and bilayer graphene films were synthesized on Cu foil (∼1 in. 2) in about 1 min by a simple ethanol-chemical vapor deposition (CVD) technique. Raman spectroscopy and high resolution transmission electron microscopy revealed the synthesized graphene films to have polycrystalline structures with 2–5 nm individual crystallite size which is a function of temperature up to 1000 °C. X-ray photoelectron spectroscopy investigations showed about 3 at.% carboxylic (COOH) functional groups were formed during growth. The field-effect transistor devices fabricated using polycrystalline graphene as conducting channel ( L c = 10 μm; W c = 50 μm) demonstrated a p-type semiconducting behavior with high drive current and Dirac point at ∼35 V. This simple one-step method of growing large area polycrystalline graphene films with semiconductor properties and easily functionalizable groups should assist in the realization of potential of polycrystalline graphene for nanoelectronics, sensors and energy storage devices.
doi_str_mv 10.1016/j.carbon.2011.04.070
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3293400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622311003691</els_id><sourcerecordid>901678864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-9a66ab92c2a4fc45233ad02c780b064f389b93fd65105fe4f31a1950c029f6703</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EokPhHyCUDaKbDNePOM4GCVUUkCqxKWvLcW4mHmXsYGdGzb_HwwwtbLry6_PRPecQ8pbCmgKVH7dra2Ib_JoBpWsQa6jhGVlRVfOSq4Y-JysAUKVkjF-QVylt81EoKl6SC8YEKFbLFbF3AxZTDN3ezi74IvRFuF826M2MXTGFcbFxSbMZR-ex2EQzDZg37VIEj2WacSpwHowPY2kH3DlrxuJgphCLDqeQ3FH0NXnRmzHhm_N6SX7efLm7_lbe_vj6_frzbWmrhs5lY6Q0bcMsM6K3omKcmw6YrRW0IEWfTbUN7ztZUah6zBfU0KYCC6zpZQ38knw66U77doedRT9HM-opup2Jiw7G6f9fvBv0Jhw0Zw0XcBT4cBaI4dce06x3LlkcR-Mx7JNucu61UlJk8upJkiomq0oqKjMqTqiNIaWI_cNAFPSxSb3Vpyb1sUkNQsMfM-_-NfPw6W91GXh_BkzKqffReOvSIyc4rVitHlPBHP3BYdTJOvQWOxfRzroL7ulJfgMNz8A5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826556816</pqid></control><display><type>article</type><title>The production of oxygenated polycrystalline graphene by one-step ethanol-chemical vapor deposition</title><source>Access via ScienceDirect (Elsevier)</source><creator>Paul, Rajat K. ; Badhulika, Sushmee ; Niyogi, Sandip ; Haddon, Robert C. ; Boddu, Veera M. ; Costales-Nieves, Carmen ; Bozhilov, Krassimir N. ; Mulchandani, Ashok</creator><creatorcontrib>Paul, Rajat K. ; Badhulika, Sushmee ; Niyogi, Sandip ; Haddon, Robert C. ; Boddu, Veera M. ; Costales-Nieves, Carmen ; Bozhilov, Krassimir N. ; Mulchandani, Ashok</creatorcontrib><description>Large-area mono- and bilayer graphene films were synthesized on Cu foil (∼1 in. 2) in about 1 min by a simple ethanol-chemical vapor deposition (CVD) technique. Raman spectroscopy and high resolution transmission electron microscopy revealed the synthesized graphene films to have polycrystalline structures with 2–5 nm individual crystallite size which is a function of temperature up to 1000 °C. X-ray photoelectron spectroscopy investigations showed about 3 at.% carboxylic (COOH) functional groups were formed during growth. The field-effect transistor devices fabricated using polycrystalline graphene as conducting channel ( L c = 10 μm; W c = 50 μm) demonstrated a p-type semiconducting behavior with high drive current and Dirac point at ∼35 V. This simple one-step method of growing large area polycrystalline graphene films with semiconductor properties and easily functionalizable groups should assist in the realization of potential of polycrystalline graphene for nanoelectronics, sensors and energy storage devices.</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2011.04.070</identifier><identifier>PMID: 22408276</identifier><identifier>CODEN: CRBNAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Carbon ; Channels ; Cross-disciplinary physics: materials science; rheology ; Crystallites ; Devices ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Graphene ; Materials science ; Nanoelectronics ; Physics ; Semiconductors ; Specific materials ; Vapor deposition</subject><ispartof>Carbon (New York), 2011-10, Vol.49 (12), p.3789-3795</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-9a66ab92c2a4fc45233ad02c780b064f389b93fd65105fe4f31a1950c029f6703</citedby><cites>FETCH-LOGICAL-c591t-9a66ab92c2a4fc45233ad02c780b064f389b93fd65105fe4f31a1950c029f6703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2011.04.070$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,782,786,887,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24315278$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22408276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paul, Rajat K.</creatorcontrib><creatorcontrib>Badhulika, Sushmee</creatorcontrib><creatorcontrib>Niyogi, Sandip</creatorcontrib><creatorcontrib>Haddon, Robert C.</creatorcontrib><creatorcontrib>Boddu, Veera M.</creatorcontrib><creatorcontrib>Costales-Nieves, Carmen</creatorcontrib><creatorcontrib>Bozhilov, Krassimir N.</creatorcontrib><creatorcontrib>Mulchandani, Ashok</creatorcontrib><title>The production of oxygenated polycrystalline graphene by one-step ethanol-chemical vapor deposition</title><title>Carbon (New York)</title><addtitle>Carbon N Y</addtitle><description>Large-area mono- and bilayer graphene films were synthesized on Cu foil (∼1 in. 2) in about 1 min by a simple ethanol-chemical vapor deposition (CVD) technique. Raman spectroscopy and high resolution transmission electron microscopy revealed the synthesized graphene films to have polycrystalline structures with 2–5 nm individual crystallite size which is a function of temperature up to 1000 °C. X-ray photoelectron spectroscopy investigations showed about 3 at.% carboxylic (COOH) functional groups were formed during growth. The field-effect transistor devices fabricated using polycrystalline graphene as conducting channel ( L c = 10 μm; W c = 50 μm) demonstrated a p-type semiconducting behavior with high drive current and Dirac point at ∼35 V. This simple one-step method of growing large area polycrystalline graphene films with semiconductor properties and easily functionalizable groups should assist in the realization of potential of polycrystalline graphene for nanoelectronics, sensors and energy storage devices.</description><subject>Carbon</subject><subject>Channels</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallites</subject><subject>Devices</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Graphene</subject><subject>Materials science</subject><subject>Nanoelectronics</subject><subject>Physics</subject><subject>Semiconductors</subject><subject>Specific materials</subject><subject>Vapor deposition</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv1DAUhS0EokPhHyCUDaKbDNePOM4GCVUUkCqxKWvLcW4mHmXsYGdGzb_HwwwtbLry6_PRPecQ8pbCmgKVH7dra2Ib_JoBpWsQa6jhGVlRVfOSq4Y-JysAUKVkjF-QVylt81EoKl6SC8YEKFbLFbF3AxZTDN3ezi74IvRFuF826M2MXTGFcbFxSbMZR-ex2EQzDZg37VIEj2WacSpwHowPY2kH3DlrxuJgphCLDqeQ3FH0NXnRmzHhm_N6SX7efLm7_lbe_vj6_frzbWmrhs5lY6Q0bcMsM6K3omKcmw6YrRW0IEWfTbUN7ztZUah6zBfU0KYCC6zpZQ38knw66U77doedRT9HM-opup2Jiw7G6f9fvBv0Jhw0Zw0XcBT4cBaI4dce06x3LlkcR-Mx7JNucu61UlJk8upJkiomq0oqKjMqTqiNIaWI_cNAFPSxSb3Vpyb1sUkNQsMfM-_-NfPw6W91GXh_BkzKqffReOvSIyc4rVitHlPBHP3BYdTJOvQWOxfRzroL7ulJfgMNz8A5</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Paul, Rajat K.</creator><creator>Badhulika, Sushmee</creator><creator>Niyogi, Sandip</creator><creator>Haddon, Robert C.</creator><creator>Boddu, Veera M.</creator><creator>Costales-Nieves, Carmen</creator><creator>Bozhilov, Krassimir N.</creator><creator>Mulchandani, Ashok</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>5PM</scope></search><sort><creationdate>20111001</creationdate><title>The production of oxygenated polycrystalline graphene by one-step ethanol-chemical vapor deposition</title><author>Paul, Rajat K. ; Badhulika, Sushmee ; Niyogi, Sandip ; Haddon, Robert C. ; Boddu, Veera M. ; Costales-Nieves, Carmen ; Bozhilov, Krassimir N. ; Mulchandani, Ashok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-9a66ab92c2a4fc45233ad02c780b064f389b93fd65105fe4f31a1950c029f6703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Carbon</topic><topic>Channels</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallites</topic><topic>Devices</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Graphene</topic><topic>Materials science</topic><topic>Nanoelectronics</topic><topic>Physics</topic><topic>Semiconductors</topic><topic>Specific materials</topic><topic>Vapor deposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paul, Rajat K.</creatorcontrib><creatorcontrib>Badhulika, Sushmee</creatorcontrib><creatorcontrib>Niyogi, Sandip</creatorcontrib><creatorcontrib>Haddon, Robert C.</creatorcontrib><creatorcontrib>Boddu, Veera M.</creatorcontrib><creatorcontrib>Costales-Nieves, Carmen</creatorcontrib><creatorcontrib>Bozhilov, Krassimir N.</creatorcontrib><creatorcontrib>Mulchandani, Ashok</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paul, Rajat K.</au><au>Badhulika, Sushmee</au><au>Niyogi, Sandip</au><au>Haddon, Robert C.</au><au>Boddu, Veera M.</au><au>Costales-Nieves, Carmen</au><au>Bozhilov, Krassimir N.</au><au>Mulchandani, Ashok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The production of oxygenated polycrystalline graphene by one-step ethanol-chemical vapor deposition</atitle><jtitle>Carbon (New York)</jtitle><addtitle>Carbon N Y</addtitle><date>2011-10-01</date><risdate>2011</risdate><volume>49</volume><issue>12</issue><spage>3789</spage><epage>3795</epage><pages>3789-3795</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><coden>CRBNAH</coden><abstract>Large-area mono- and bilayer graphene films were synthesized on Cu foil (∼1 in. 2) in about 1 min by a simple ethanol-chemical vapor deposition (CVD) technique. Raman spectroscopy and high resolution transmission electron microscopy revealed the synthesized graphene films to have polycrystalline structures with 2–5 nm individual crystallite size which is a function of temperature up to 1000 °C. X-ray photoelectron spectroscopy investigations showed about 3 at.% carboxylic (COOH) functional groups were formed during growth. The field-effect transistor devices fabricated using polycrystalline graphene as conducting channel ( L c = 10 μm; W c = 50 μm) demonstrated a p-type semiconducting behavior with high drive current and Dirac point at ∼35 V. This simple one-step method of growing large area polycrystalline graphene films with semiconductor properties and easily functionalizable groups should assist in the realization of potential of polycrystalline graphene for nanoelectronics, sensors and energy storage devices.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>22408276</pmid><doi>10.1016/j.carbon.2011.04.070</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2011-10, Vol.49 (12), p.3789-3795
issn 0008-6223
1873-3891
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3293400
source Access via ScienceDirect (Elsevier)
subjects Carbon
Channels
Cross-disciplinary physics: materials science
rheology
Crystallites
Devices
Exact sciences and technology
Fullerenes and related materials
diamonds, graphite
Graphene
Materials science
Nanoelectronics
Physics
Semiconductors
Specific materials
Vapor deposition
title The production of oxygenated polycrystalline graphene by one-step ethanol-chemical vapor deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-08T00%3A53%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20production%20of%20oxygenated%20polycrystalline%20graphene%20by%20one-step%20ethanol-chemical%20vapor%20deposition&rft.jtitle=Carbon%20(New%20York)&rft.au=Paul,%20Rajat%20K.&rft.date=2011-10-01&rft.volume=49&rft.issue=12&rft.spage=3789&rft.epage=3795&rft.pages=3789-3795&rft.issn=0008-6223&rft.eissn=1873-3891&rft.coden=CRBNAH&rft_id=info:doi/10.1016/j.carbon.2011.04.070&rft_dat=%3Cproquest_pubme%3E901678864%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826556816&rft_id=info:pmid/22408276&rft_els_id=S0008622311003691&rfr_iscdi=true