The production of oxygenated polycrystalline graphene by one-step ethanol-chemical vapor deposition
Large-area mono- and bilayer graphene films were synthesized on Cu foil (∼1 in. 2) in about 1 min by a simple ethanol-chemical vapor deposition (CVD) technique. Raman spectroscopy and high resolution transmission electron microscopy revealed the synthesized graphene films to have polycrystalline str...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2011-10, Vol.49 (12), p.3789-3795 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3795 |
---|---|
container_issue | 12 |
container_start_page | 3789 |
container_title | Carbon (New York) |
container_volume | 49 |
creator | Paul, Rajat K. Badhulika, Sushmee Niyogi, Sandip Haddon, Robert C. Boddu, Veera M. Costales-Nieves, Carmen Bozhilov, Krassimir N. Mulchandani, Ashok |
description | Large-area mono- and bilayer graphene films were synthesized on Cu foil (∼1
in.
2) in about 1
min by a simple ethanol-chemical vapor deposition (CVD) technique. Raman spectroscopy and high resolution transmission electron microscopy revealed the synthesized graphene films to have polycrystalline structures with 2–5
nm individual crystallite size which is a function of temperature up to 1000
°C. X-ray photoelectron spectroscopy investigations showed about 3 at.% carboxylic (COOH) functional groups were formed during growth. The field-effect transistor devices fabricated using polycrystalline graphene as conducting channel (
L
c
=
10
μm;
W
c
=
50
μm) demonstrated a p-type semiconducting behavior with high drive current and Dirac point at ∼35
V. This simple one-step method of growing large area polycrystalline graphene films with semiconductor properties and easily functionalizable groups should assist in the realization of potential of polycrystalline graphene for nanoelectronics, sensors and energy storage devices. |
doi_str_mv | 10.1016/j.carbon.2011.04.070 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3293400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622311003691</els_id><sourcerecordid>901678864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-9a66ab92c2a4fc45233ad02c780b064f389b93fd65105fe4f31a1950c029f6703</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EokPhHyCUDaKbDNePOM4GCVUUkCqxKWvLcW4mHmXsYGdGzb_HwwwtbLry6_PRPecQ8pbCmgKVH7dra2Ib_JoBpWsQa6jhGVlRVfOSq4Y-JysAUKVkjF-QVylt81EoKl6SC8YEKFbLFbF3AxZTDN3ezi74IvRFuF826M2MXTGFcbFxSbMZR-ex2EQzDZg37VIEj2WacSpwHowPY2kH3DlrxuJgphCLDqeQ3FH0NXnRmzHhm_N6SX7efLm7_lbe_vj6_frzbWmrhs5lY6Q0bcMsM6K3omKcmw6YrRW0IEWfTbUN7ztZUah6zBfU0KYCC6zpZQ38knw66U77doedRT9HM-opup2Jiw7G6f9fvBv0Jhw0Zw0XcBT4cBaI4dce06x3LlkcR-Mx7JNucu61UlJk8upJkiomq0oqKjMqTqiNIaWI_cNAFPSxSb3Vpyb1sUkNQsMfM-_-NfPw6W91GXh_BkzKqffReOvSIyc4rVitHlPBHP3BYdTJOvQWOxfRzroL7ulJfgMNz8A5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826556816</pqid></control><display><type>article</type><title>The production of oxygenated polycrystalline graphene by one-step ethanol-chemical vapor deposition</title><source>Access via ScienceDirect (Elsevier)</source><creator>Paul, Rajat K. ; Badhulika, Sushmee ; Niyogi, Sandip ; Haddon, Robert C. ; Boddu, Veera M. ; Costales-Nieves, Carmen ; Bozhilov, Krassimir N. ; Mulchandani, Ashok</creator><creatorcontrib>Paul, Rajat K. ; Badhulika, Sushmee ; Niyogi, Sandip ; Haddon, Robert C. ; Boddu, Veera M. ; Costales-Nieves, Carmen ; Bozhilov, Krassimir N. ; Mulchandani, Ashok</creatorcontrib><description>Large-area mono- and bilayer graphene films were synthesized on Cu foil (∼1
in.
2) in about 1
min by a simple ethanol-chemical vapor deposition (CVD) technique. Raman spectroscopy and high resolution transmission electron microscopy revealed the synthesized graphene films to have polycrystalline structures with 2–5
nm individual crystallite size which is a function of temperature up to 1000
°C. X-ray photoelectron spectroscopy investigations showed about 3 at.% carboxylic (COOH) functional groups were formed during growth. The field-effect transistor devices fabricated using polycrystalline graphene as conducting channel (
L
c
=
10
μm;
W
c
=
50
μm) demonstrated a p-type semiconducting behavior with high drive current and Dirac point at ∼35
V. This simple one-step method of growing large area polycrystalline graphene films with semiconductor properties and easily functionalizable groups should assist in the realization of potential of polycrystalline graphene for nanoelectronics, sensors and energy storage devices.</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2011.04.070</identifier><identifier>PMID: 22408276</identifier><identifier>CODEN: CRBNAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Carbon ; Channels ; Cross-disciplinary physics: materials science; rheology ; Crystallites ; Devices ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Graphene ; Materials science ; Nanoelectronics ; Physics ; Semiconductors ; Specific materials ; Vapor deposition</subject><ispartof>Carbon (New York), 2011-10, Vol.49 (12), p.3789-3795</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-9a66ab92c2a4fc45233ad02c780b064f389b93fd65105fe4f31a1950c029f6703</citedby><cites>FETCH-LOGICAL-c591t-9a66ab92c2a4fc45233ad02c780b064f389b93fd65105fe4f31a1950c029f6703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2011.04.070$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,782,786,887,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24315278$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22408276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paul, Rajat K.</creatorcontrib><creatorcontrib>Badhulika, Sushmee</creatorcontrib><creatorcontrib>Niyogi, Sandip</creatorcontrib><creatorcontrib>Haddon, Robert C.</creatorcontrib><creatorcontrib>Boddu, Veera M.</creatorcontrib><creatorcontrib>Costales-Nieves, Carmen</creatorcontrib><creatorcontrib>Bozhilov, Krassimir N.</creatorcontrib><creatorcontrib>Mulchandani, Ashok</creatorcontrib><title>The production of oxygenated polycrystalline graphene by one-step ethanol-chemical vapor deposition</title><title>Carbon (New York)</title><addtitle>Carbon N Y</addtitle><description>Large-area mono- and bilayer graphene films were synthesized on Cu foil (∼1
in.
2) in about 1
min by a simple ethanol-chemical vapor deposition (CVD) technique. Raman spectroscopy and high resolution transmission electron microscopy revealed the synthesized graphene films to have polycrystalline structures with 2–5
nm individual crystallite size which is a function of temperature up to 1000
°C. X-ray photoelectron spectroscopy investigations showed about 3 at.% carboxylic (COOH) functional groups were formed during growth. The field-effect transistor devices fabricated using polycrystalline graphene as conducting channel (
L
c
=
10
μm;
W
c
=
50
μm) demonstrated a p-type semiconducting behavior with high drive current and Dirac point at ∼35
V. This simple one-step method of growing large area polycrystalline graphene films with semiconductor properties and easily functionalizable groups should assist in the realization of potential of polycrystalline graphene for nanoelectronics, sensors and energy storage devices.</description><subject>Carbon</subject><subject>Channels</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallites</subject><subject>Devices</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Graphene</subject><subject>Materials science</subject><subject>Nanoelectronics</subject><subject>Physics</subject><subject>Semiconductors</subject><subject>Specific materials</subject><subject>Vapor deposition</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv1DAUhS0EokPhHyCUDaKbDNePOM4GCVUUkCqxKWvLcW4mHmXsYGdGzb_HwwwtbLry6_PRPecQ8pbCmgKVH7dra2Ib_JoBpWsQa6jhGVlRVfOSq4Y-JysAUKVkjF-QVylt81EoKl6SC8YEKFbLFbF3AxZTDN3ezi74IvRFuF826M2MXTGFcbFxSbMZR-ex2EQzDZg37VIEj2WacSpwHowPY2kH3DlrxuJgphCLDqeQ3FH0NXnRmzHhm_N6SX7efLm7_lbe_vj6_frzbWmrhs5lY6Q0bcMsM6K3omKcmw6YrRW0IEWfTbUN7ztZUah6zBfU0KYCC6zpZQ38knw66U77doedRT9HM-opup2Jiw7G6f9fvBv0Jhw0Zw0XcBT4cBaI4dce06x3LlkcR-Mx7JNucu61UlJk8upJkiomq0oqKjMqTqiNIaWI_cNAFPSxSb3Vpyb1sUkNQsMfM-_-NfPw6W91GXh_BkzKqffReOvSIyc4rVitHlPBHP3BYdTJOvQWOxfRzroL7ulJfgMNz8A5</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Paul, Rajat K.</creator><creator>Badhulika, Sushmee</creator><creator>Niyogi, Sandip</creator><creator>Haddon, Robert C.</creator><creator>Boddu, Veera M.</creator><creator>Costales-Nieves, Carmen</creator><creator>Bozhilov, Krassimir N.</creator><creator>Mulchandani, Ashok</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>5PM</scope></search><sort><creationdate>20111001</creationdate><title>The production of oxygenated polycrystalline graphene by one-step ethanol-chemical vapor deposition</title><author>Paul, Rajat K. ; Badhulika, Sushmee ; Niyogi, Sandip ; Haddon, Robert C. ; Boddu, Veera M. ; Costales-Nieves, Carmen ; Bozhilov, Krassimir N. ; Mulchandani, Ashok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-9a66ab92c2a4fc45233ad02c780b064f389b93fd65105fe4f31a1950c029f6703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Carbon</topic><topic>Channels</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallites</topic><topic>Devices</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Graphene</topic><topic>Materials science</topic><topic>Nanoelectronics</topic><topic>Physics</topic><topic>Semiconductors</topic><topic>Specific materials</topic><topic>Vapor deposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paul, Rajat K.</creatorcontrib><creatorcontrib>Badhulika, Sushmee</creatorcontrib><creatorcontrib>Niyogi, Sandip</creatorcontrib><creatorcontrib>Haddon, Robert C.</creatorcontrib><creatorcontrib>Boddu, Veera M.</creatorcontrib><creatorcontrib>Costales-Nieves, Carmen</creatorcontrib><creatorcontrib>Bozhilov, Krassimir N.</creatorcontrib><creatorcontrib>Mulchandani, Ashok</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paul, Rajat K.</au><au>Badhulika, Sushmee</au><au>Niyogi, Sandip</au><au>Haddon, Robert C.</au><au>Boddu, Veera M.</au><au>Costales-Nieves, Carmen</au><au>Bozhilov, Krassimir N.</au><au>Mulchandani, Ashok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The production of oxygenated polycrystalline graphene by one-step ethanol-chemical vapor deposition</atitle><jtitle>Carbon (New York)</jtitle><addtitle>Carbon N Y</addtitle><date>2011-10-01</date><risdate>2011</risdate><volume>49</volume><issue>12</issue><spage>3789</spage><epage>3795</epage><pages>3789-3795</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><coden>CRBNAH</coden><abstract>Large-area mono- and bilayer graphene films were synthesized on Cu foil (∼1
in.
2) in about 1
min by a simple ethanol-chemical vapor deposition (CVD) technique. Raman spectroscopy and high resolution transmission electron microscopy revealed the synthesized graphene films to have polycrystalline structures with 2–5
nm individual crystallite size which is a function of temperature up to 1000
°C. X-ray photoelectron spectroscopy investigations showed about 3 at.% carboxylic (COOH) functional groups were formed during growth. The field-effect transistor devices fabricated using polycrystalline graphene as conducting channel (
L
c
=
10
μm;
W
c
=
50
μm) demonstrated a p-type semiconducting behavior with high drive current and Dirac point at ∼35
V. This simple one-step method of growing large area polycrystalline graphene films with semiconductor properties and easily functionalizable groups should assist in the realization of potential of polycrystalline graphene for nanoelectronics, sensors and energy storage devices.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>22408276</pmid><doi>10.1016/j.carbon.2011.04.070</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2011-10, Vol.49 (12), p.3789-3795 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3293400 |
source | Access via ScienceDirect (Elsevier) |
subjects | Carbon Channels Cross-disciplinary physics: materials science rheology Crystallites Devices Exact sciences and technology Fullerenes and related materials diamonds, graphite Graphene Materials science Nanoelectronics Physics Semiconductors Specific materials Vapor deposition |
title | The production of oxygenated polycrystalline graphene by one-step ethanol-chemical vapor deposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-08T00%3A53%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20production%20of%20oxygenated%20polycrystalline%20graphene%20by%20one-step%20ethanol-chemical%20vapor%20deposition&rft.jtitle=Carbon%20(New%20York)&rft.au=Paul,%20Rajat%20K.&rft.date=2011-10-01&rft.volume=49&rft.issue=12&rft.spage=3789&rft.epage=3795&rft.pages=3789-3795&rft.issn=0008-6223&rft.eissn=1873-3891&rft.coden=CRBNAH&rft_id=info:doi/10.1016/j.carbon.2011.04.070&rft_dat=%3Cproquest_pubme%3E901678864%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826556816&rft_id=info:pmid/22408276&rft_els_id=S0008622311003691&rfr_iscdi=true |