The Apoplastic Oxidative Burst Peroxidase in Arabidopsis Is a Major Component of Pattern-Triggered Immunity

In plants, reactive oxygen species (ROS) associated with the response to pathogen attack are generated by NADPH oxidases or apoplastic peroxidases. Antisense expression of a heterologous French bean (Phaseolus vulgaris) peroxidase (FBP1) cDNA in Arabidopsis thaliana was previously shown to diminish...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant cell 2012-01, Vol.24 (1), p.275-287
Hauptverfasser: Daudi, Arsalan, Cheng, Zhenyu, O'Brien, Jose A., Mammarella, Nicole, Khan, Satina, Ausubel, Frederick M., Bolwell, G. Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 287
container_issue 1
container_start_page 275
container_title The Plant cell
container_volume 24
creator Daudi, Arsalan
Cheng, Zhenyu
O'Brien, Jose A.
Mammarella, Nicole
Khan, Satina
Ausubel, Frederick M.
Bolwell, G. Paul
description In plants, reactive oxygen species (ROS) associated with the response to pathogen attack are generated by NADPH oxidases or apoplastic peroxidases. Antisense expression of a heterologous French bean (Phaseolus vulgaris) peroxidase (FBP1) cDNA in Arabidopsis thaliana was previously shown to diminish the expression of two Arabidopsis peroxidases (peroxidase 33 [PRX33] and PRX34), block the oxidative burst in response to a fungal elicitor, and cause enhanced susceptibility to a broad range of fungal and bacterial pathogens. Here we show that mature leaves of T-DNA insertion lines with diminished expression of PRX33 and PRX34 exhibit reduced ROS and callose deposition in response to microbeassociated molecular patterns (MAMPs), including the synthetic peptides Flg22 and Elf26 corresponding to bacterial flagellili and elongation factor Tu, respectively. PRX33 and PRX34 knockdown lines also exhibited diminished activation of Flg22-activated genes after Flg22 treatment. These MAMP-activated genes were also downregulated in unchallenged leaves of the peroxidase knockdown lines, suggesting that a low level of apoplastic ROS production may be required to preprime basal resistance. Finally, the PRX33 knockdown line is more susceptible to Pseudomonas syringae than wild-type plants. In aggregate, these data demonstrate that the peroxidase-dependent oxidative burst plays an important role in Arabidopsis basal resistance mediated by the recognition of MAMPs.
doi_str_mv 10.1105/tpc.111.093039
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3289579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41433965</jstor_id><sourcerecordid>41433965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c571t-ddb97da5ec07ddc76da670f14bb6ab8cd0095f53e073757ad86be3e8fa8c3723</originalsourceid><addsrcrecordid>eNqFkktv1DAUhSMEoqWwZQeyxAI2GfyM7Q3SMOIxUlG7mAU7y7GdqYckDrZT0X-PoykjYAErX_l-Puf66lTVcwRXCEH2Nk-mFGgFJYFEPqjOESO4xlJ8fVhqSGFNG4bOqicpHSCEiCP5uDrDGFOOGTqvvu1uHFhPYep1yt6Aqx_e6uxvHXg_x5TBtYthuUoO-BGso269DVPyCWwT0OCLPoQINmGYwujGDEIHrnXOLo71Lvr93kVnwXYY5tHnu6fVo073yT27Py-q3ccPu83n-vLq03azvqwN4yjX1raSW82cgdxawxurGw47RNu20a0wFkLJOkYc5IQzrq1oWkec6LQwhGNyUb07yk5zOzhrylxR92qKftDxTgXt1Z-d0d-ofbhVBAvJuCwCr-8FYvg-u5TV4JNxfa9HF-akJC5zCiYWqzf_JBEtK8eMSvh_FEIhCIWEF_TVX-ghzHEsK1soSIs7XrxXR8rEkFJ03emHCKolG6pkoxRIHbNRHrz8fS8n_FcYCvDiCBxSDvHUp4gSIhtGfgJru7_X</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1000457122</pqid></control><display><type>article</type><title>The Apoplastic Oxidative Burst Peroxidase in Arabidopsis Is a Major Component of Pattern-Triggered Immunity</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Daudi, Arsalan ; Cheng, Zhenyu ; O'Brien, Jose A. ; Mammarella, Nicole ; Khan, Satina ; Ausubel, Frederick M. ; Bolwell, G. Paul</creator><creatorcontrib>Daudi, Arsalan ; Cheng, Zhenyu ; O'Brien, Jose A. ; Mammarella, Nicole ; Khan, Satina ; Ausubel, Frederick M. ; Bolwell, G. Paul</creatorcontrib><description>In plants, reactive oxygen species (ROS) associated with the response to pathogen attack are generated by NADPH oxidases or apoplastic peroxidases. Antisense expression of a heterologous French bean (Phaseolus vulgaris) peroxidase (FBP1) cDNA in Arabidopsis thaliana was previously shown to diminish the expression of two Arabidopsis peroxidases (peroxidase 33 [PRX33] and PRX34), block the oxidative burst in response to a fungal elicitor, and cause enhanced susceptibility to a broad range of fungal and bacterial pathogens. Here we show that mature leaves of T-DNA insertion lines with diminished expression of PRX33 and PRX34 exhibit reduced ROS and callose deposition in response to microbeassociated molecular patterns (MAMPs), including the synthetic peptides Flg22 and Elf26 corresponding to bacterial flagellili and elongation factor Tu, respectively. PRX33 and PRX34 knockdown lines also exhibited diminished activation of Flg22-activated genes after Flg22 treatment. These MAMP-activated genes were also downregulated in unchallenged leaves of the peroxidase knockdown lines, suggesting that a low level of apoplastic ROS production may be required to preprime basal resistance. Finally, the PRX33 knockdown line is more susceptible to Pseudomonas syringae than wild-type plants. In aggregate, these data demonstrate that the peroxidase-dependent oxidative burst plays an important role in Arabidopsis basal resistance mediated by the recognition of MAMPs.</description><identifier>ISSN: 1040-4651</identifier><identifier>EISSN: 1532-298X</identifier><identifier>DOI: 10.1105/tpc.111.093039</identifier><identifier>PMID: 22247251</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Arabidopsis ; Arabidopsis - enzymology ; Arabidopsis - immunology ; Arabidopsis - metabolism ; Arabidopsis - microbiology ; Arabidopsis Proteins ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Cell walls ; complementary DNA ; enzymology ; flagellin ; gene activation ; Gene Expression Regulation, Plant ; genes ; genetics ; Glucans ; Glucans - metabolism ; green beans ; Hydrogen ; immunity ; immunology ; Leaves ; Messenger RNA ; metabolism ; microbiology ; NADP (coenzyme) ; Oxidases ; Pathogens ; Peptides ; peroxidase ; Peroxidases ; Peroxidases - genetics ; Peroxidases - metabolism ; Peroxides ; Phaseolus vulgaris ; physiology ; Plant cells ; Plant Immunity ; Plant Immunity - genetics ; Plant Immunity - physiology ; Plant Leaves ; Plant Leaves - enzymology ; Plant Leaves - immunology ; Plant Leaves - metabolism ; Plant Leaves - microbiology ; Plants ; Plants, Genetically Modified ; Plants, Genetically Modified - enzymology ; Plants, Genetically Modified - immunology ; Plants, Genetically Modified - metabolism ; Plants, Genetically Modified - microbiology ; Pseudomonas syringae ; Pseudomonas syringae - physiology ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; synthetic peptides ; transfer DNA</subject><ispartof>The Plant cell, 2012-01, Vol.24 (1), p.275-287</ispartof><rights>2012 American Society of Plant Biologists</rights><rights>Copyright American Society of Plant Biologists Jan 2012</rights><rights>2012 American Society of Plant Biologists. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c571t-ddb97da5ec07ddc76da670f14bb6ab8cd0095f53e073757ad86be3e8fa8c3723</citedby><cites>FETCH-LOGICAL-c571t-ddb97da5ec07ddc76da670f14bb6ab8cd0095f53e073757ad86be3e8fa8c3723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41433965$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41433965$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22247251$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Daudi, Arsalan</creatorcontrib><creatorcontrib>Cheng, Zhenyu</creatorcontrib><creatorcontrib>O'Brien, Jose A.</creatorcontrib><creatorcontrib>Mammarella, Nicole</creatorcontrib><creatorcontrib>Khan, Satina</creatorcontrib><creatorcontrib>Ausubel, Frederick M.</creatorcontrib><creatorcontrib>Bolwell, G. Paul</creatorcontrib><title>The Apoplastic Oxidative Burst Peroxidase in Arabidopsis Is a Major Component of Pattern-Triggered Immunity</title><title>The Plant cell</title><addtitle>Plant Cell</addtitle><description>In plants, reactive oxygen species (ROS) associated with the response to pathogen attack are generated by NADPH oxidases or apoplastic peroxidases. Antisense expression of a heterologous French bean (Phaseolus vulgaris) peroxidase (FBP1) cDNA in Arabidopsis thaliana was previously shown to diminish the expression of two Arabidopsis peroxidases (peroxidase 33 [PRX33] and PRX34), block the oxidative burst in response to a fungal elicitor, and cause enhanced susceptibility to a broad range of fungal and bacterial pathogens. Here we show that mature leaves of T-DNA insertion lines with diminished expression of PRX33 and PRX34 exhibit reduced ROS and callose deposition in response to microbeassociated molecular patterns (MAMPs), including the synthetic peptides Flg22 and Elf26 corresponding to bacterial flagellili and elongation factor Tu, respectively. PRX33 and PRX34 knockdown lines also exhibited diminished activation of Flg22-activated genes after Flg22 treatment. These MAMP-activated genes were also downregulated in unchallenged leaves of the peroxidase knockdown lines, suggesting that a low level of apoplastic ROS production may be required to preprime basal resistance. Finally, the PRX33 knockdown line is more susceptible to Pseudomonas syringae than wild-type plants. In aggregate, these data demonstrate that the peroxidase-dependent oxidative burst plays an important role in Arabidopsis basal resistance mediated by the recognition of MAMPs.</description><subject>Arabidopsis</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - immunology</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis - microbiology</subject><subject>Arabidopsis Proteins</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Cell walls</subject><subject>complementary DNA</subject><subject>enzymology</subject><subject>flagellin</subject><subject>gene activation</subject><subject>Gene Expression Regulation, Plant</subject><subject>genes</subject><subject>genetics</subject><subject>Glucans</subject><subject>Glucans - metabolism</subject><subject>green beans</subject><subject>Hydrogen</subject><subject>immunity</subject><subject>immunology</subject><subject>Leaves</subject><subject>Messenger RNA</subject><subject>metabolism</subject><subject>microbiology</subject><subject>NADP (coenzyme)</subject><subject>Oxidases</subject><subject>Pathogens</subject><subject>Peptides</subject><subject>peroxidase</subject><subject>Peroxidases</subject><subject>Peroxidases - genetics</subject><subject>Peroxidases - metabolism</subject><subject>Peroxides</subject><subject>Phaseolus vulgaris</subject><subject>physiology</subject><subject>Plant cells</subject><subject>Plant Immunity</subject><subject>Plant Immunity - genetics</subject><subject>Plant Immunity - physiology</subject><subject>Plant Leaves</subject><subject>Plant Leaves - enzymology</subject><subject>Plant Leaves - immunology</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Leaves - microbiology</subject><subject>Plants</subject><subject>Plants, Genetically Modified</subject><subject>Plants, Genetically Modified - enzymology</subject><subject>Plants, Genetically Modified - immunology</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Plants, Genetically Modified - microbiology</subject><subject>Pseudomonas syringae</subject><subject>Pseudomonas syringae - physiology</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>synthetic peptides</subject><subject>transfer DNA</subject><issn>1040-4651</issn><issn>1532-298X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkktv1DAUhSMEoqWwZQeyxAI2GfyM7Q3SMOIxUlG7mAU7y7GdqYckDrZT0X-PoykjYAErX_l-Puf66lTVcwRXCEH2Nk-mFGgFJYFEPqjOESO4xlJ8fVhqSGFNG4bOqicpHSCEiCP5uDrDGFOOGTqvvu1uHFhPYep1yt6Aqx_e6uxvHXg_x5TBtYthuUoO-BGso269DVPyCWwT0OCLPoQINmGYwujGDEIHrnXOLo71Lvr93kVnwXYY5tHnu6fVo073yT27Py-q3ccPu83n-vLq03azvqwN4yjX1raSW82cgdxawxurGw47RNu20a0wFkLJOkYc5IQzrq1oWkec6LQwhGNyUb07yk5zOzhrylxR92qKftDxTgXt1Z-d0d-ofbhVBAvJuCwCr-8FYvg-u5TV4JNxfa9HF-akJC5zCiYWqzf_JBEtK8eMSvh_FEIhCIWEF_TVX-ghzHEsK1soSIs7XrxXR8rEkFJ03emHCKolG6pkoxRIHbNRHrz8fS8n_FcYCvDiCBxSDvHUp4gSIhtGfgJru7_X</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Daudi, Arsalan</creator><creator>Cheng, Zhenyu</creator><creator>O'Brien, Jose A.</creator><creator>Mammarella, Nicole</creator><creator>Khan, Satina</creator><creator>Ausubel, Frederick M.</creator><creator>Bolwell, G. Paul</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7QO</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope><scope>7T5</scope><scope>H94</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120101</creationdate><title>The Apoplastic Oxidative Burst Peroxidase in Arabidopsis Is a Major Component of Pattern-Triggered Immunity</title><author>Daudi, Arsalan ; Cheng, Zhenyu ; O'Brien, Jose A. ; Mammarella, Nicole ; Khan, Satina ; Ausubel, Frederick M. ; Bolwell, G. Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c571t-ddb97da5ec07ddc76da670f14bb6ab8cd0095f53e073757ad86be3e8fa8c3723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - immunology</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis - microbiology</topic><topic>Arabidopsis Proteins</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Cell walls</topic><topic>complementary DNA</topic><topic>enzymology</topic><topic>flagellin</topic><topic>gene activation</topic><topic>Gene Expression Regulation, Plant</topic><topic>genes</topic><topic>genetics</topic><topic>Glucans</topic><topic>Glucans - metabolism</topic><topic>green beans</topic><topic>Hydrogen</topic><topic>immunity</topic><topic>immunology</topic><topic>Leaves</topic><topic>Messenger RNA</topic><topic>metabolism</topic><topic>microbiology</topic><topic>NADP (coenzyme)</topic><topic>Oxidases</topic><topic>Pathogens</topic><topic>Peptides</topic><topic>peroxidase</topic><topic>Peroxidases</topic><topic>Peroxidases - genetics</topic><topic>Peroxidases - metabolism</topic><topic>Peroxides</topic><topic>Phaseolus vulgaris</topic><topic>physiology</topic><topic>Plant cells</topic><topic>Plant Immunity</topic><topic>Plant Immunity - genetics</topic><topic>Plant Immunity - physiology</topic><topic>Plant Leaves</topic><topic>Plant Leaves - enzymology</topic><topic>Plant Leaves - immunology</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Leaves - microbiology</topic><topic>Plants</topic><topic>Plants, Genetically Modified</topic><topic>Plants, Genetically Modified - enzymology</topic><topic>Plants, Genetically Modified - immunology</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Plants, Genetically Modified - microbiology</topic><topic>Pseudomonas syringae</topic><topic>Pseudomonas syringae - physiology</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>synthetic peptides</topic><topic>transfer DNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daudi, Arsalan</creatorcontrib><creatorcontrib>Cheng, Zhenyu</creatorcontrib><creatorcontrib>O'Brien, Jose A.</creatorcontrib><creatorcontrib>Mammarella, Nicole</creatorcontrib><creatorcontrib>Khan, Satina</creatorcontrib><creatorcontrib>Ausubel, Frederick M.</creatorcontrib><creatorcontrib>Bolwell, G. Paul</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daudi, Arsalan</au><au>Cheng, Zhenyu</au><au>O'Brien, Jose A.</au><au>Mammarella, Nicole</au><au>Khan, Satina</au><au>Ausubel, Frederick M.</au><au>Bolwell, G. Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Apoplastic Oxidative Burst Peroxidase in Arabidopsis Is a Major Component of Pattern-Triggered Immunity</atitle><jtitle>The Plant cell</jtitle><addtitle>Plant Cell</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>24</volume><issue>1</issue><spage>275</spage><epage>287</epage><pages>275-287</pages><issn>1040-4651</issn><eissn>1532-298X</eissn><abstract>In plants, reactive oxygen species (ROS) associated with the response to pathogen attack are generated by NADPH oxidases or apoplastic peroxidases. Antisense expression of a heterologous French bean (Phaseolus vulgaris) peroxidase (FBP1) cDNA in Arabidopsis thaliana was previously shown to diminish the expression of two Arabidopsis peroxidases (peroxidase 33 [PRX33] and PRX34), block the oxidative burst in response to a fungal elicitor, and cause enhanced susceptibility to a broad range of fungal and bacterial pathogens. Here we show that mature leaves of T-DNA insertion lines with diminished expression of PRX33 and PRX34 exhibit reduced ROS and callose deposition in response to microbeassociated molecular patterns (MAMPs), including the synthetic peptides Flg22 and Elf26 corresponding to bacterial flagellili and elongation factor Tu, respectively. PRX33 and PRX34 knockdown lines also exhibited diminished activation of Flg22-activated genes after Flg22 treatment. These MAMP-activated genes were also downregulated in unchallenged leaves of the peroxidase knockdown lines, suggesting that a low level of apoplastic ROS production may be required to preprime basal resistance. Finally, the PRX33 knockdown line is more susceptible to Pseudomonas syringae than wild-type plants. In aggregate, these data demonstrate that the peroxidase-dependent oxidative burst plays an important role in Arabidopsis basal resistance mediated by the recognition of MAMPs.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>22247251</pmid><doi>10.1105/tpc.111.093039</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1040-4651
ispartof The Plant cell, 2012-01, Vol.24 (1), p.275-287
issn 1040-4651
1532-298X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3289579
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Arabidopsis
Arabidopsis - enzymology
Arabidopsis - immunology
Arabidopsis - metabolism
Arabidopsis - microbiology
Arabidopsis Proteins
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Cell walls
complementary DNA
enzymology
flagellin
gene activation
Gene Expression Regulation, Plant
genes
genetics
Glucans
Glucans - metabolism
green beans
Hydrogen
immunity
immunology
Leaves
Messenger RNA
metabolism
microbiology
NADP (coenzyme)
Oxidases
Pathogens
Peptides
peroxidase
Peroxidases
Peroxidases - genetics
Peroxidases - metabolism
Peroxides
Phaseolus vulgaris
physiology
Plant cells
Plant Immunity
Plant Immunity - genetics
Plant Immunity - physiology
Plant Leaves
Plant Leaves - enzymology
Plant Leaves - immunology
Plant Leaves - metabolism
Plant Leaves - microbiology
Plants
Plants, Genetically Modified
Plants, Genetically Modified - enzymology
Plants, Genetically Modified - immunology
Plants, Genetically Modified - metabolism
Plants, Genetically Modified - microbiology
Pseudomonas syringae
Pseudomonas syringae - physiology
Reactive oxygen species
Reactive Oxygen Species - metabolism
synthetic peptides
transfer DNA
title The Apoplastic Oxidative Burst Peroxidase in Arabidopsis Is a Major Component of Pattern-Triggered Immunity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A52%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Apoplastic%20Oxidative%20Burst%20Peroxidase%20in%20Arabidopsis%20Is%20a%20Major%20Component%20of%20Pattern-Triggered%20Immunity&rft.jtitle=The%20Plant%20cell&rft.au=Daudi,%20Arsalan&rft.date=2012-01-01&rft.volume=24&rft.issue=1&rft.spage=275&rft.epage=287&rft.pages=275-287&rft.issn=1040-4651&rft.eissn=1532-298X&rft_id=info:doi/10.1105/tpc.111.093039&rft_dat=%3Cjstor_pubme%3E41433965%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1000457122&rft_id=info:pmid/22247251&rft_jstor_id=41433965&rfr_iscdi=true