A tale of two itches. Common features and notable differences in brain activation evoked by cowhage and histamine induced itch

Previous PET and fMRI brain imaging studies targeting neural networks processing itch sensation have used histamine as the sole itch inducer. In contrast with histamine, cowhage-induced itch is mediated via proteinase activated receptors PAR2 and is transmitted through a separate spinothalamic pathw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2012-02, Vol.59 (4), p.3611-3623
Hauptverfasser: Papoiu, Alexandru D.P., Coghill, Robert C., Kraft, Robert A., Wang, Hui, Yosipovitch, Gil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Previous PET and fMRI brain imaging studies targeting neural networks processing itch sensation have used histamine as the sole itch inducer. In contrast with histamine, cowhage-induced itch is mediated via proteinase activated receptors PAR2 and is transmitted through a separate spinothalamic pathway, therefore imaging the brain activation evoked by cowhage could provide further insight into central processing of itch. We report for the first time a functional MRI Arterial Spin Labeling (ASL) study of neuronal processing of itch induced by cowhage, analyzed in contrast with histamine-induced itch. We also explored the brain responses induced by histamine and cowhage combined in a tight sequence. The results of our analyses obtained in a group of 15 healthy volunteers suggested that cowhage and histamine co-activated a core group of brain structures, while also revealing notable differences. Core areas activated by both stimuli were found in the thalamus, primary and secondary somatosensory cortices, posterior parietal cortex, superior and middle temporal cortices, PCC, ACC, precuneus and cuneus. Cowhage induced a notably distinct and more extensive involvement of the insular cortex, claustrum, basal ganglia, putamen, thalamic nuclei and pulvinar. The differences observed between these two itch modalities were investigated to determine the impact of quantitative versus qualitative factors, and correlations between itch intensity and the patterns in brain activation were explored. Our analysis revealed that the most significant differences between cowhage and histamine itch were not affected by stimulus intensity, although a subset of regions displayed activations which were intensity-dependent. The combined application of cowhage and histamine highlighted the role of insula and claustrum in the processing of both itch modalities in the same time. The present results suggest the existence of overlapping but also distinct neuronal networks processing these two different types of itch.
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2011.10.099