Analysis of human mini-exome sequencing data from Genetic Analysis Workshop 17 using a Bayesian hierarchical mixture model
Next-generation sequencing technologies are rapidly changing the field of genetic epidemiology and enabling exploration of the full allele frequency spectrum underlying complex diseases. Although sequencing technologies have shifted our focus toward rare genetic variants, statistical methods traditi...
Gespeichert in:
Veröffentlicht in: | BMC proceedings 2011-11, Vol.5 Suppl 9 (Suppl 9), p.S93-S93, Article S93 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | S93 |
---|---|
container_issue | Suppl 9 |
container_start_page | S93 |
container_title | BMC proceedings |
container_volume | 5 Suppl 9 |
creator | Bueno Filho, Julio S Morota, Gota Tran, Quoc Maenner, Matthew J Vera-Cala, Lina M Engelman, Corinne D Meyers, Kristin J |
description | Next-generation sequencing technologies are rapidly changing the field of genetic epidemiology and enabling exploration of the full allele frequency spectrum underlying complex diseases. Although sequencing technologies have shifted our focus toward rare genetic variants, statistical methods traditionally used in genetic association studies are inadequate for estimating effects of low minor allele frequency variants. Four our study we use the Genetic Analysis Workshop 17 data from 697 unrelated individuals (genotypes for 24,487 autosomal variants from 3,205 genes). We apply a Bayesian hierarchical mixture model to identify genes associated with a simulated binary phenotype using a transformed genotype design matrix weighted by allele frequencies. A Metropolis Hasting algorithm is used to jointly sample each indicator variable and additive genetic effect pair from its conditional posterior distribution, and remaining parameters are sampled by Gibbs sampling. This method identified 58 genes with a posterior probability greater than 0.8 for being associated with the phenotype. One of these 58 genes, PIK3C2B was correctly identified as being associated with affected status based on the simulation process. This project demonstrates the utility of Bayesian hierarchical mixture models using a transformed genotype matrix to detect genes containing rare and common variants associated with a binary phenotype. |
doi_str_mv | 10.1186/1753-6561-5-S9-S93 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3287935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753467577</sourcerecordid><originalsourceid>FETCH-LOGICAL-b3693-2623f9a8e30dd3559648640294e470a6a95e60f9f22b629bdc5c45c6b5a3dfbe3</originalsourceid><addsrcrecordid>eNqFkl1rFTEQhoNYbHv0D3ghwStv1mbzubkR2tLWQqEXVbwM2exsN3WzOSa70uOvd9dTD60owkDCzDsPwzuD0OuSvC_LSh6VSrBCClkWorjRc7Bn6GCXfP7ov48Oc74jRBKh6Qu0TylTrKzIAfpxPNh-k33GscXdFOyAgx98AfcxAM7wbYLB-eEWN3a0uE0x4AsYYPQO7zq_xPQ1d3GNS4WnvIgtPrEbyH6mdR6STa7zzvYz-n6cEuAQG-hfor3W9hlePbwr9Pn87NPpx-Lq-uLy9PiqqJnUrKCSslbbChhpGiaElrySnFDNgStipdUCJGl1S2ktqa4bJxwXTtbCsqatga3Qhy13PdUBGgfDmGxv1skHmzYmWm-eVgbfmdv43TBaKc3EDDjbAmof_wF4WnExmMV7s3hvhLnRc7CZ8-5hkBRnX_Nogs8O-t4OEKf8q4VLJZT6v5QwXhHC-SJ9-4f0Lk5p3k02mkimKjZve4XoVuRSzDlBu5u-JGY5pr_P--axcbuW39fDfgLHWMcy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>906378322</pqid></control><display><type>article</type><title>Analysis of human mini-exome sequencing data from Genetic Analysis Workshop 17 using a Bayesian hierarchical mixture model</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><source>PubMed Central Open Access</source><creator>Bueno Filho, Julio S ; Morota, Gota ; Tran, Quoc ; Maenner, Matthew J ; Vera-Cala, Lina M ; Engelman, Corinne D ; Meyers, Kristin J</creator><creatorcontrib>Bueno Filho, Julio S ; Morota, Gota ; Tran, Quoc ; Maenner, Matthew J ; Vera-Cala, Lina M ; Engelman, Corinne D ; Meyers, Kristin J</creatorcontrib><description>Next-generation sequencing technologies are rapidly changing the field of genetic epidemiology and enabling exploration of the full allele frequency spectrum underlying complex diseases. Although sequencing technologies have shifted our focus toward rare genetic variants, statistical methods traditionally used in genetic association studies are inadequate for estimating effects of low minor allele frequency variants. Four our study we use the Genetic Analysis Workshop 17 data from 697 unrelated individuals (genotypes for 24,487 autosomal variants from 3,205 genes). We apply a Bayesian hierarchical mixture model to identify genes associated with a simulated binary phenotype using a transformed genotype design matrix weighted by allele frequencies. A Metropolis Hasting algorithm is used to jointly sample each indicator variable and additive genetic effect pair from its conditional posterior distribution, and remaining parameters are sampled by Gibbs sampling. This method identified 58 genes with a posterior probability greater than 0.8 for being associated with the phenotype. One of these 58 genes, PIK3C2B was correctly identified as being associated with affected status based on the simulation process. This project demonstrates the utility of Bayesian hierarchical mixture models using a transformed genotype matrix to detect genes containing rare and common variants associated with a binary phenotype.</description><identifier>ISSN: 1753-6561</identifier><identifier>EISSN: 1753-6561</identifier><identifier>DOI: 10.1186/1753-6561-5-S9-S93</identifier><identifier>PMID: 22373180</identifier><language>eng</language><publisher>England: BioMed Central</publisher><subject>Genes ; Genomics ; Proceedings ; Science ; Studies</subject><ispartof>BMC proceedings, 2011-11, Vol.5 Suppl 9 (Suppl 9), p.S93-S93, Article S93</ispartof><rights>2011 Bueno Filho et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright ©2011 Bueno Filho et al; licensee BioMed Central Ltd. 2011 Bueno Filho et al; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b3693-2623f9a8e30dd3559648640294e470a6a95e60f9f22b629bdc5c45c6b5a3dfbe3</citedby><cites>FETCH-LOGICAL-b3693-2623f9a8e30dd3559648640294e470a6a95e60f9f22b629bdc5c45c6b5a3dfbe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287935/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287935/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22373180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bueno Filho, Julio S</creatorcontrib><creatorcontrib>Morota, Gota</creatorcontrib><creatorcontrib>Tran, Quoc</creatorcontrib><creatorcontrib>Maenner, Matthew J</creatorcontrib><creatorcontrib>Vera-Cala, Lina M</creatorcontrib><creatorcontrib>Engelman, Corinne D</creatorcontrib><creatorcontrib>Meyers, Kristin J</creatorcontrib><title>Analysis of human mini-exome sequencing data from Genetic Analysis Workshop 17 using a Bayesian hierarchical mixture model</title><title>BMC proceedings</title><addtitle>BMC Proc</addtitle><description>Next-generation sequencing technologies are rapidly changing the field of genetic epidemiology and enabling exploration of the full allele frequency spectrum underlying complex diseases. Although sequencing technologies have shifted our focus toward rare genetic variants, statistical methods traditionally used in genetic association studies are inadequate for estimating effects of low minor allele frequency variants. Four our study we use the Genetic Analysis Workshop 17 data from 697 unrelated individuals (genotypes for 24,487 autosomal variants from 3,205 genes). We apply a Bayesian hierarchical mixture model to identify genes associated with a simulated binary phenotype using a transformed genotype design matrix weighted by allele frequencies. A Metropolis Hasting algorithm is used to jointly sample each indicator variable and additive genetic effect pair from its conditional posterior distribution, and remaining parameters are sampled by Gibbs sampling. This method identified 58 genes with a posterior probability greater than 0.8 for being associated with the phenotype. One of these 58 genes, PIK3C2B was correctly identified as being associated with affected status based on the simulation process. This project demonstrates the utility of Bayesian hierarchical mixture models using a transformed genotype matrix to detect genes containing rare and common variants associated with a binary phenotype.</description><subject>Genes</subject><subject>Genomics</subject><subject>Proceedings</subject><subject>Science</subject><subject>Studies</subject><issn>1753-6561</issn><issn>1753-6561</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkl1rFTEQhoNYbHv0D3ghwStv1mbzubkR2tLWQqEXVbwM2exsN3WzOSa70uOvd9dTD60owkDCzDsPwzuD0OuSvC_LSh6VSrBCClkWorjRc7Bn6GCXfP7ov48Oc74jRBKh6Qu0TylTrKzIAfpxPNh-k33GscXdFOyAgx98AfcxAM7wbYLB-eEWN3a0uE0x4AsYYPQO7zq_xPQ1d3GNS4WnvIgtPrEbyH6mdR6STa7zzvYz-n6cEuAQG-hfor3W9hlePbwr9Pn87NPpx-Lq-uLy9PiqqJnUrKCSslbbChhpGiaElrySnFDNgStipdUCJGl1S2ktqa4bJxwXTtbCsqatga3Qhy13PdUBGgfDmGxv1skHmzYmWm-eVgbfmdv43TBaKc3EDDjbAmof_wF4WnExmMV7s3hvhLnRc7CZ8-5hkBRnX_Nogs8O-t4OEKf8q4VLJZT6v5QwXhHC-SJ9-4f0Lk5p3k02mkimKjZve4XoVuRSzDlBu5u-JGY5pr_P--axcbuW39fDfgLHWMcy</recordid><startdate>20111129</startdate><enddate>20111129</enddate><creator>Bueno Filho, Julio S</creator><creator>Morota, Gota</creator><creator>Tran, Quoc</creator><creator>Maenner, Matthew J</creator><creator>Vera-Cala, Lina M</creator><creator>Engelman, Corinne D</creator><creator>Meyers, Kristin J</creator><general>BioMed Central</general><general>BioMed Central Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20111129</creationdate><title>Analysis of human mini-exome sequencing data from Genetic Analysis Workshop 17 using a Bayesian hierarchical mixture model</title><author>Bueno Filho, Julio S ; Morota, Gota ; Tran, Quoc ; Maenner, Matthew J ; Vera-Cala, Lina M ; Engelman, Corinne D ; Meyers, Kristin J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b3693-2623f9a8e30dd3559648640294e470a6a95e60f9f22b629bdc5c45c6b5a3dfbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Genes</topic><topic>Genomics</topic><topic>Proceedings</topic><topic>Science</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bueno Filho, Julio S</creatorcontrib><creatorcontrib>Morota, Gota</creatorcontrib><creatorcontrib>Tran, Quoc</creatorcontrib><creatorcontrib>Maenner, Matthew J</creatorcontrib><creatorcontrib>Vera-Cala, Lina M</creatorcontrib><creatorcontrib>Engelman, Corinne D</creatorcontrib><creatorcontrib>Meyers, Kristin J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bueno Filho, Julio S</au><au>Morota, Gota</au><au>Tran, Quoc</au><au>Maenner, Matthew J</au><au>Vera-Cala, Lina M</au><au>Engelman, Corinne D</au><au>Meyers, Kristin J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of human mini-exome sequencing data from Genetic Analysis Workshop 17 using a Bayesian hierarchical mixture model</atitle><jtitle>BMC proceedings</jtitle><addtitle>BMC Proc</addtitle><date>2011-11-29</date><risdate>2011</risdate><volume>5 Suppl 9</volume><issue>Suppl 9</issue><spage>S93</spage><epage>S93</epage><pages>S93-S93</pages><artnum>S93</artnum><issn>1753-6561</issn><eissn>1753-6561</eissn><abstract>Next-generation sequencing technologies are rapidly changing the field of genetic epidemiology and enabling exploration of the full allele frequency spectrum underlying complex diseases. Although sequencing technologies have shifted our focus toward rare genetic variants, statistical methods traditionally used in genetic association studies are inadequate for estimating effects of low minor allele frequency variants. Four our study we use the Genetic Analysis Workshop 17 data from 697 unrelated individuals (genotypes for 24,487 autosomal variants from 3,205 genes). We apply a Bayesian hierarchical mixture model to identify genes associated with a simulated binary phenotype using a transformed genotype design matrix weighted by allele frequencies. A Metropolis Hasting algorithm is used to jointly sample each indicator variable and additive genetic effect pair from its conditional posterior distribution, and remaining parameters are sampled by Gibbs sampling. This method identified 58 genes with a posterior probability greater than 0.8 for being associated with the phenotype. One of these 58 genes, PIK3C2B was correctly identified as being associated with affected status based on the simulation process. This project demonstrates the utility of Bayesian hierarchical mixture models using a transformed genotype matrix to detect genes containing rare and common variants associated with a binary phenotype.</abstract><cop>England</cop><pub>BioMed Central</pub><pmid>22373180</pmid><doi>10.1186/1753-6561-5-S9-S93</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1753-6561 |
ispartof | BMC proceedings, 2011-11, Vol.5 Suppl 9 (Suppl 9), p.S93-S93, Article S93 |
issn | 1753-6561 1753-6561 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3287935 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SpringerLink Journals - AutoHoldings; PubMed Central Open Access |
subjects | Genes Genomics Proceedings Science Studies |
title | Analysis of human mini-exome sequencing data from Genetic Analysis Workshop 17 using a Bayesian hierarchical mixture model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A47%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20human%20mini-exome%20sequencing%20data%20from%20Genetic%20Analysis%20Workshop%2017%20using%20a%20Bayesian%20hierarchical%20mixture%20model&rft.jtitle=BMC%20proceedings&rft.au=Bueno%20Filho,%20Julio%20S&rft.date=2011-11-29&rft.volume=5%20Suppl%209&rft.issue=Suppl%209&rft.spage=S93&rft.epage=S93&rft.pages=S93-S93&rft.artnum=S93&rft.issn=1753-6561&rft.eissn=1753-6561&rft_id=info:doi/10.1186/1753-6561-5-S9-S93&rft_dat=%3Cproquest_pubme%3E1753467577%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=906378322&rft_id=info:pmid/22373180&rfr_iscdi=true |