Increased dosage of the chromosome 21 ortholog Dyrk1a promotes megakaryoblastic leukemia in a murine model of Down syndrome
Individuals with Down syndrome (DS; also known as trisomy 21) have a markedly increased risk of leukemia in childhood but a decreased risk of solid tumors in adulthood. Acquired mutations in the transcription factor-encoding GATA1 gene are observed in nearly all individuals with DS who are born with...
Gespeichert in:
Veröffentlicht in: | The Journal of clinical investigation 2012-03, Vol.122 (3), p.948-962 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 962 |
---|---|
container_issue | 3 |
container_start_page | 948 |
container_title | The Journal of clinical investigation |
container_volume | 122 |
creator | Malinge, Sébastien Bliss-Moreau, Meghan Kirsammer, Gina Diebold, Lauren Chlon, Timothy Gurbuxani, Sandeep Crispino, John D |
description | Individuals with Down syndrome (DS; also known as trisomy 21) have a markedly increased risk of leukemia in childhood but a decreased risk of solid tumors in adulthood. Acquired mutations in the transcription factor-encoding GATA1 gene are observed in nearly all individuals with DS who are born with transient myeloproliferative disorder (TMD), a clonal preleukemia, and/or who develop acute megakaryoblastic leukemia (AMKL). Individuals who do not have DS but bear germline GATA1 mutations analogous to those detected in individuals with TMD and DS-AMKL are not predisposed to leukemia. To better understand the functional contribution of trisomy 21 to leukemogenesis, we used mouse and human cell models of DS to reproduce the multistep pathogenesis of DS-AMKL and to identify chromosome 21 genes that promote megakaryoblastic leukemia in children with DS. Our results revealed that trisomy for only 33 orthologs of human chromosome 21 (Hsa21) genes was sufficient to cooperate with GATA1 mutations to initiate megakaryoblastic leukemia in vivo. Furthermore, through a functional screening of the trisomic genes, we demonstrated that DYRK1A, which encodes dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A, was a potent megakaryoblastic tumor-promoting gene that contributed to leukemogenesis through dysregulation of nuclear factor of activated T cells (NFAT) activation. Given that calcineurin/NFAT pathway inhibition has been implicated in the decreased tumor incidence in adults with DS, our results show that the same pathway can be both proleukemic in children and antitumorigenic in adults. |
doi_str_mv | 10.1172/JCI60455 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3287382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A282863582</galeid><sourcerecordid>A282863582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c668t-d029cd6a0a268ff0030e077b2363054764a04c7044986c03947751cc12c5ef723</originalsourceid><addsrcrecordid>eNqN0luL1DAUB_Aiijuugp9AgoKXh665tUlfhGXWy8jCgrfXkElP2-y0yZi06uCXN-PsLjsyD9KHQvM7_yQ9J8seE3xCiKCvP84XJeZFcSebkaKQuaRM3s1mGFOSV4LJo-xBjJcYE84Lfj87opQVnAgyy34vnAmgI9So9lG3gHyDxg6Q6YIffPQDIEqQD2Pne9-is01YEY3W28URIhqg1SsdNn7Z6zhag3qYVjBYjaxDGg1TsA7Q4Gvot8ln_qdDcePqVA8Ps3uN7iM8unofZ1_fvf0y_5CfX7xfzE_Pc1OWcsxrTCtTlxprWsqmwZhhwEIsKSsZLrgoucbcCMx5JUuDWcWFKIgxhJoCGkHZcfZml7uelgPUBtwYdK_WwQ7p5Mprq_ZXnO1U638oRmX6eduAF1cBwX-fII5qsNFA32sHfoqqoiUpsOAyyaf_yEs_BZdul5AgVJa4SujZDrW6B2Vd49OuZhupTqlMhhV_N80PqBYcpCN6B41Nn_f8yQGfnjq1wxwseLVXkMwIv8ZWTzGqxedP_28vvu3b57dsB7ofu-j7abTexX34cgdN8DEGaG5aQrDazrW6nutEn9xu4Q28HmT2B8Lv7jc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>927128609</pqid></control><display><type>article</type><title>Increased dosage of the chromosome 21 ortholog Dyrk1a promotes megakaryoblastic leukemia in a murine model of Down syndrome</title><source>MEDLINE</source><source>Journals@Ovid Complete - AutoHoldings</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Malinge, Sébastien ; Bliss-Moreau, Meghan ; Kirsammer, Gina ; Diebold, Lauren ; Chlon, Timothy ; Gurbuxani, Sandeep ; Crispino, John D</creator><creatorcontrib>Malinge, Sébastien ; Bliss-Moreau, Meghan ; Kirsammer, Gina ; Diebold, Lauren ; Chlon, Timothy ; Gurbuxani, Sandeep ; Crispino, John D</creatorcontrib><description>Individuals with Down syndrome (DS; also known as trisomy 21) have a markedly increased risk of leukemia in childhood but a decreased risk of solid tumors in adulthood. Acquired mutations in the transcription factor-encoding GATA1 gene are observed in nearly all individuals with DS who are born with transient myeloproliferative disorder (TMD), a clonal preleukemia, and/or who develop acute megakaryoblastic leukemia (AMKL). Individuals who do not have DS but bear germline GATA1 mutations analogous to those detected in individuals with TMD and DS-AMKL are not predisposed to leukemia. To better understand the functional contribution of trisomy 21 to leukemogenesis, we used mouse and human cell models of DS to reproduce the multistep pathogenesis of DS-AMKL and to identify chromosome 21 genes that promote megakaryoblastic leukemia in children with DS. Our results revealed that trisomy for only 33 orthologs of human chromosome 21 (Hsa21) genes was sufficient to cooperate with GATA1 mutations to initiate megakaryoblastic leukemia in vivo. Furthermore, through a functional screening of the trisomic genes, we demonstrated that DYRK1A, which encodes dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A, was a potent megakaryoblastic tumor-promoting gene that contributed to leukemogenesis through dysregulation of nuclear factor of activated T cells (NFAT) activation. Given that calcineurin/NFAT pathway inhibition has been implicated in the decreased tumor incidence in adults with DS, our results show that the same pathway can be both proleukemic in children and antitumorigenic in adults.</description><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI60455</identifier><identifier>PMID: 22354171</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Animals ; Biomedical research ; Bone marrow ; Bone Marrow Transplantation ; Calcineurin - metabolism ; Chromosomes ; Chromosomes, Human, Pair 21 ; Complications and side effects ; Cooperation ; Disease Models, Animal ; Down syndrome ; Down Syndrome - complications ; Down Syndrome - genetics ; Dyrk Kinases ; GATA1 Transcription Factor - genetics ; Gene mutations ; Genes ; Genetic aspects ; Genotype & phenotype ; Health aspects ; Hematology ; Humans ; Kinases ; Leukemia ; Leukemia, Megakaryoblastic, Acute - complications ; Leukemia, Megakaryoblastic, Acute - genetics ; Mice ; Models, Genetic ; Mutation ; Phosphorylation ; Physiological aspects ; Protein Serine-Threonine Kinases - genetics ; Protein-Tyrosine Kinases - genetics ; Risk ; Risk factors ; Thrombocytosis - metabolism ; Transcription factors ; Transplants & implants ; Tumors</subject><ispartof>The Journal of clinical investigation, 2012-03, Vol.122 (3), p.948-962</ispartof><rights>COPYRIGHT 2012 American Society for Clinical Investigation</rights><rights>Copyright American Society for Clinical Investigation Mar 2012</rights><rights>Copyright © 2012, American Society for Clinical Investigation 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c668t-d029cd6a0a268ff0030e077b2363054764a04c7044986c03947751cc12c5ef723</citedby><cites>FETCH-LOGICAL-c668t-d029cd6a0a268ff0030e077b2363054764a04c7044986c03947751cc12c5ef723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287382/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287382/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22354171$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Malinge, Sébastien</creatorcontrib><creatorcontrib>Bliss-Moreau, Meghan</creatorcontrib><creatorcontrib>Kirsammer, Gina</creatorcontrib><creatorcontrib>Diebold, Lauren</creatorcontrib><creatorcontrib>Chlon, Timothy</creatorcontrib><creatorcontrib>Gurbuxani, Sandeep</creatorcontrib><creatorcontrib>Crispino, John D</creatorcontrib><title>Increased dosage of the chromosome 21 ortholog Dyrk1a promotes megakaryoblastic leukemia in a murine model of Down syndrome</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>Individuals with Down syndrome (DS; also known as trisomy 21) have a markedly increased risk of leukemia in childhood but a decreased risk of solid tumors in adulthood. Acquired mutations in the transcription factor-encoding GATA1 gene are observed in nearly all individuals with DS who are born with transient myeloproliferative disorder (TMD), a clonal preleukemia, and/or who develop acute megakaryoblastic leukemia (AMKL). Individuals who do not have DS but bear germline GATA1 mutations analogous to those detected in individuals with TMD and DS-AMKL are not predisposed to leukemia. To better understand the functional contribution of trisomy 21 to leukemogenesis, we used mouse and human cell models of DS to reproduce the multistep pathogenesis of DS-AMKL and to identify chromosome 21 genes that promote megakaryoblastic leukemia in children with DS. Our results revealed that trisomy for only 33 orthologs of human chromosome 21 (Hsa21) genes was sufficient to cooperate with GATA1 mutations to initiate megakaryoblastic leukemia in vivo. Furthermore, through a functional screening of the trisomic genes, we demonstrated that DYRK1A, which encodes dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A, was a potent megakaryoblastic tumor-promoting gene that contributed to leukemogenesis through dysregulation of nuclear factor of activated T cells (NFAT) activation. Given that calcineurin/NFAT pathway inhibition has been implicated in the decreased tumor incidence in adults with DS, our results show that the same pathway can be both proleukemic in children and antitumorigenic in adults.</description><subject>Animals</subject><subject>Biomedical research</subject><subject>Bone marrow</subject><subject>Bone Marrow Transplantation</subject><subject>Calcineurin - metabolism</subject><subject>Chromosomes</subject><subject>Chromosomes, Human, Pair 21</subject><subject>Complications and side effects</subject><subject>Cooperation</subject><subject>Disease Models, Animal</subject><subject>Down syndrome</subject><subject>Down Syndrome - complications</subject><subject>Down Syndrome - genetics</subject><subject>Dyrk Kinases</subject><subject>GATA1 Transcription Factor - genetics</subject><subject>Gene mutations</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genotype & phenotype</subject><subject>Health aspects</subject><subject>Hematology</subject><subject>Humans</subject><subject>Kinases</subject><subject>Leukemia</subject><subject>Leukemia, Megakaryoblastic, Acute - complications</subject><subject>Leukemia, Megakaryoblastic, Acute - genetics</subject><subject>Mice</subject><subject>Models, Genetic</subject><subject>Mutation</subject><subject>Phosphorylation</subject><subject>Physiological aspects</subject><subject>Protein Serine-Threonine Kinases - genetics</subject><subject>Protein-Tyrosine Kinases - genetics</subject><subject>Risk</subject><subject>Risk factors</subject><subject>Thrombocytosis - metabolism</subject><subject>Transcription factors</subject><subject>Transplants & implants</subject><subject>Tumors</subject><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqN0luL1DAUB_Aiijuugp9AgoKXh665tUlfhGXWy8jCgrfXkElP2-y0yZi06uCXN-PsLjsyD9KHQvM7_yQ9J8seE3xCiKCvP84XJeZFcSebkaKQuaRM3s1mGFOSV4LJo-xBjJcYE84Lfj87opQVnAgyy34vnAmgI9So9lG3gHyDxg6Q6YIffPQDIEqQD2Pne9-is01YEY3W28URIhqg1SsdNn7Z6zhag3qYVjBYjaxDGg1TsA7Q4Gvot8ln_qdDcePqVA8Ps3uN7iM8unofZ1_fvf0y_5CfX7xfzE_Pc1OWcsxrTCtTlxprWsqmwZhhwEIsKSsZLrgoucbcCMx5JUuDWcWFKIgxhJoCGkHZcfZml7uelgPUBtwYdK_WwQ7p5Mprq_ZXnO1U638oRmX6eduAF1cBwX-fII5qsNFA32sHfoqqoiUpsOAyyaf_yEs_BZdul5AgVJa4SujZDrW6B2Vd49OuZhupTqlMhhV_N80PqBYcpCN6B41Nn_f8yQGfnjq1wxwseLVXkMwIv8ZWTzGqxedP_28vvu3b57dsB7ofu-j7abTexX34cgdN8DEGaG5aQrDazrW6nutEn9xu4Q28HmT2B8Lv7jc</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Malinge, Sébastien</creator><creator>Bliss-Moreau, Meghan</creator><creator>Kirsammer, Gina</creator><creator>Diebold, Lauren</creator><creator>Chlon, Timothy</creator><creator>Gurbuxani, Sandeep</creator><creator>Crispino, John D</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120301</creationdate><title>Increased dosage of the chromosome 21 ortholog Dyrk1a promotes megakaryoblastic leukemia in a murine model of Down syndrome</title><author>Malinge, Sébastien ; Bliss-Moreau, Meghan ; Kirsammer, Gina ; Diebold, Lauren ; Chlon, Timothy ; Gurbuxani, Sandeep ; Crispino, John D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c668t-d029cd6a0a268ff0030e077b2363054764a04c7044986c03947751cc12c5ef723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Biomedical research</topic><topic>Bone marrow</topic><topic>Bone Marrow Transplantation</topic><topic>Calcineurin - metabolism</topic><topic>Chromosomes</topic><topic>Chromosomes, Human, Pair 21</topic><topic>Complications and side effects</topic><topic>Cooperation</topic><topic>Disease Models, Animal</topic><topic>Down syndrome</topic><topic>Down Syndrome - complications</topic><topic>Down Syndrome - genetics</topic><topic>Dyrk Kinases</topic><topic>GATA1 Transcription Factor - genetics</topic><topic>Gene mutations</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genotype & phenotype</topic><topic>Health aspects</topic><topic>Hematology</topic><topic>Humans</topic><topic>Kinases</topic><topic>Leukemia</topic><topic>Leukemia, Megakaryoblastic, Acute - complications</topic><topic>Leukemia, Megakaryoblastic, Acute - genetics</topic><topic>Mice</topic><topic>Models, Genetic</topic><topic>Mutation</topic><topic>Phosphorylation</topic><topic>Physiological aspects</topic><topic>Protein Serine-Threonine Kinases - genetics</topic><topic>Protein-Tyrosine Kinases - genetics</topic><topic>Risk</topic><topic>Risk factors</topic><topic>Thrombocytosis - metabolism</topic><topic>Transcription factors</topic><topic>Transplants & implants</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malinge, Sébastien</creatorcontrib><creatorcontrib>Bliss-Moreau, Meghan</creatorcontrib><creatorcontrib>Kirsammer, Gina</creatorcontrib><creatorcontrib>Diebold, Lauren</creatorcontrib><creatorcontrib>Chlon, Timothy</creatorcontrib><creatorcontrib>Gurbuxani, Sandeep</creatorcontrib><creatorcontrib>Crispino, John D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malinge, Sébastien</au><au>Bliss-Moreau, Meghan</au><au>Kirsammer, Gina</au><au>Diebold, Lauren</au><au>Chlon, Timothy</au><au>Gurbuxani, Sandeep</au><au>Crispino, John D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increased dosage of the chromosome 21 ortholog Dyrk1a promotes megakaryoblastic leukemia in a murine model of Down syndrome</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>122</volume><issue>3</issue><spage>948</spage><epage>962</epage><pages>948-962</pages><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Individuals with Down syndrome (DS; also known as trisomy 21) have a markedly increased risk of leukemia in childhood but a decreased risk of solid tumors in adulthood. Acquired mutations in the transcription factor-encoding GATA1 gene are observed in nearly all individuals with DS who are born with transient myeloproliferative disorder (TMD), a clonal preleukemia, and/or who develop acute megakaryoblastic leukemia (AMKL). Individuals who do not have DS but bear germline GATA1 mutations analogous to those detected in individuals with TMD and DS-AMKL are not predisposed to leukemia. To better understand the functional contribution of trisomy 21 to leukemogenesis, we used mouse and human cell models of DS to reproduce the multistep pathogenesis of DS-AMKL and to identify chromosome 21 genes that promote megakaryoblastic leukemia in children with DS. Our results revealed that trisomy for only 33 orthologs of human chromosome 21 (Hsa21) genes was sufficient to cooperate with GATA1 mutations to initiate megakaryoblastic leukemia in vivo. Furthermore, through a functional screening of the trisomic genes, we demonstrated that DYRK1A, which encodes dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A, was a potent megakaryoblastic tumor-promoting gene that contributed to leukemogenesis through dysregulation of nuclear factor of activated T cells (NFAT) activation. Given that calcineurin/NFAT pathway inhibition has been implicated in the decreased tumor incidence in adults with DS, our results show that the same pathway can be both proleukemic in children and antitumorigenic in adults.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>22354171</pmid><doi>10.1172/JCI60455</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9738 |
ispartof | The Journal of clinical investigation, 2012-03, Vol.122 (3), p.948-962 |
issn | 0021-9738 1558-8238 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3287382 |
source | MEDLINE; Journals@Ovid Complete - AutoHoldings; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Animals Biomedical research Bone marrow Bone Marrow Transplantation Calcineurin - metabolism Chromosomes Chromosomes, Human, Pair 21 Complications and side effects Cooperation Disease Models, Animal Down syndrome Down Syndrome - complications Down Syndrome - genetics Dyrk Kinases GATA1 Transcription Factor - genetics Gene mutations Genes Genetic aspects Genotype & phenotype Health aspects Hematology Humans Kinases Leukemia Leukemia, Megakaryoblastic, Acute - complications Leukemia, Megakaryoblastic, Acute - genetics Mice Models, Genetic Mutation Phosphorylation Physiological aspects Protein Serine-Threonine Kinases - genetics Protein-Tyrosine Kinases - genetics Risk Risk factors Thrombocytosis - metabolism Transcription factors Transplants & implants Tumors |
title | Increased dosage of the chromosome 21 ortholog Dyrk1a promotes megakaryoblastic leukemia in a murine model of Down syndrome |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increased%20dosage%20of%20the%20chromosome%2021%20ortholog%20Dyrk1a%20promotes%20megakaryoblastic%20leukemia%20in%20a%20murine%20model%20of%20Down%20syndrome&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Malinge,%20S%C3%A9bastien&rft.date=2012-03-01&rft.volume=122&rft.issue=3&rft.spage=948&rft.epage=962&rft.pages=948-962&rft.issn=0021-9738&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI60455&rft_dat=%3Cgale_pubme%3EA282863582%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=927128609&rft_id=info:pmid/22354171&rft_galeid=A282863582&rfr_iscdi=true |