Lobule‐specific membrane excitability of cerebellar Purkinje cells
Non‐technical summary Cerebellar vermis consists of 10 lobules, and each lobule receives different sensory information. Afferent inputs are integrated in cerebellar Purkinje cells (PCs) which are the sole output of the cerebellar cortex. We show that intrinsic membrane properties are widely differe...
Gespeichert in:
Veröffentlicht in: | The Journal of physiology 2012-01, Vol.590 (2), p.273-288 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 288 |
---|---|
container_issue | 2 |
container_start_page | 273 |
container_title | The Journal of physiology |
container_volume | 590 |
creator | Kim, Chang‐Hee Oh, Seung‐Ha Lee, Jun Ho Chang, Sun O Kim, Jun Kim, Sang Jeong |
description | Non‐technical summary Cerebellar vermis consists of 10 lobules, and each lobule receives different sensory information. Afferent inputs are integrated in cerebellar Purkinje cells (PCs) which are the sole output of the cerebellar cortex. We show that intrinsic membrane properties are widely different between PCs in the spinocerebellum (lobules III–V) and vestibulocerebellum (lobule X).
Cerebellar Purkinje cells (PCs) are the sole output of the cerebellar cortex and function as key to a variety of learning‐related behaviours by integrating multimodal afferent inputs. Intrinsic membrane excitability of neurons determines the input–output relationship, and therefore governs the functions of neural circuits. Cerebellar vermis consists of ten lobules (lobules I–X), and each lobule receives different sensory information. However, lobule‐specific differences of electrophysiological properties of PC are incompletely understood. To address this question, we performed a systematic comparison of membrane properties of PCs from different lobules (lobules III–V vs. X). Two types of firing patterns (tonic firing and complex bursting) were identified in response to depolarizing current injections in lobule III–V PCs, whereas four distinct firing patterns (tonic firing, complex bursting, initial bursting and gap firing) were observed in lobule X. A‐type K+ current and early inactivation of fast Na+ conductance with activation of 4‐aminopyridine‐sensitive conductances were shown to be responsible for the formation of gap firing and initial bursting patterns, respectively, which were observed only in lobule X. In response to current injection, PCs in lobule X spiked with wider dynamic range. These differences in firing pattern and membrane properties probably contribute to signal processing of afferent inputs in lobule‐specific fashion, and particularly diversity of discharge patterns in lobule X, as a part of the vestibulocerebellum, might be involved in strict coordination of a precise temporal response to a wide range of head movements. |
doi_str_mv | 10.1113/jphysiol.2011.221846 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3285064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1323803268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5844-8fedbcbe0f4b3a61a40b835c061b3c9acdefc7bbfe3f34d33389bd8ec346d64b3</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS0EokPhDRCKxAI2GWxfx3E2SFUpfxqJLsrasp1r6sGJB3sCnR2PwDPyJGQ0bQUsECtL1985uuceQh4zumSMwYv15nJXQopLThlbcs6UkHfIggnZ1W3bwV2yoJTzGtqGHZEHpawpZUC77j454pwqkJQuyKtVslPEn99_lA264IOrBhxsNiNWeOXC1tgQw3ZXJV85zGgxRpOr8yl_DuMa51mM5SG5500s-Oj6PSYfX59dnL6tVx_evDs9WdWuUULUymNvnUXqhQUjmRHUKmgclcyC64zr0bvWWo_gQfQAoDrbK3QgZC9nzTF5efDdTHbA3uG4zSbqTQ6DyTudTNB__ozhUn9KXzVw1VApZoNn1wY5fZmwbPUQyj7CHDdNRXdMyk62fE8-_yfJgIOiwKWa0ad_oes05XE-hGaNaEBQJWGmxIFyOZWS0d-uzajeF6pvCtX7QvWh0Fn25PfIt6KbBmegOwDfQsTdf5nqi_fnQrUCfgFUXbNZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545340863</pqid></control><display><type>article</type><title>Lobule‐specific membrane excitability of cerebellar Purkinje cells</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kim, Chang‐Hee ; Oh, Seung‐Ha ; Lee, Jun Ho ; Chang, Sun O ; Kim, Jun ; Kim, Sang Jeong</creator><creatorcontrib>Kim, Chang‐Hee ; Oh, Seung‐Ha ; Lee, Jun Ho ; Chang, Sun O ; Kim, Jun ; Kim, Sang Jeong</creatorcontrib><description>Non‐technical summary Cerebellar vermis consists of 10 lobules, and each lobule receives different sensory information. Afferent inputs are integrated in cerebellar Purkinje cells (PCs) which are the sole output of the cerebellar cortex. We show that intrinsic membrane properties are widely different between PCs in the spinocerebellum (lobules III–V) and vestibulocerebellum (lobule X).
Cerebellar Purkinje cells (PCs) are the sole output of the cerebellar cortex and function as key to a variety of learning‐related behaviours by integrating multimodal afferent inputs. Intrinsic membrane excitability of neurons determines the input–output relationship, and therefore governs the functions of neural circuits. Cerebellar vermis consists of ten lobules (lobules I–X), and each lobule receives different sensory information. However, lobule‐specific differences of electrophysiological properties of PC are incompletely understood. To address this question, we performed a systematic comparison of membrane properties of PCs from different lobules (lobules III–V vs. X). Two types of firing patterns (tonic firing and complex bursting) were identified in response to depolarizing current injections in lobule III–V PCs, whereas four distinct firing patterns (tonic firing, complex bursting, initial bursting and gap firing) were observed in lobule X. A‐type K+ current and early inactivation of fast Na+ conductance with activation of 4‐aminopyridine‐sensitive conductances were shown to be responsible for the formation of gap firing and initial bursting patterns, respectively, which were observed only in lobule X. In response to current injection, PCs in lobule X spiked with wider dynamic range. These differences in firing pattern and membrane properties probably contribute to signal processing of afferent inputs in lobule‐specific fashion, and particularly diversity of discharge patterns in lobule X, as a part of the vestibulocerebellum, might be involved in strict coordination of a precise temporal response to a wide range of head movements.</description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1113/jphysiol.2011.221846</identifier><identifier>PMID: 22083600</identifier><identifier>CODEN: JPHYA7</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Action Potentials - physiology ; Animals ; Cell Membrane - physiology ; Cerebral Cortex - anatomy & histology ; Cerebral Cortex - physiology ; Electric Stimulation ; Electrophysiological Phenomena - physiology ; Membrane Potentials - physiology ; Models, Animal ; Neurons, Afferent - physiology ; Neuroscience ; Patch-Clamp Techniques ; Purkinje Cells - physiology ; Rats ; Rats, Sprague-Dawley</subject><ispartof>The Journal of physiology, 2012-01, Vol.590 (2), p.273-288</ispartof><rights>2012 The Authors. The Journal of Physiology © 2012 The Physiological Society</rights><rights>2012 The Authors. The Journal of Physiology © 2012 The Physiological Society 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5844-8fedbcbe0f4b3a61a40b835c061b3c9acdefc7bbfe3f34d33389bd8ec346d64b3</citedby><cites>FETCH-LOGICAL-c5844-8fedbcbe0f4b3a61a40b835c061b3c9acdefc7bbfe3f34d33389bd8ec346d64b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3285064/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3285064/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22083600$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Chang‐Hee</creatorcontrib><creatorcontrib>Oh, Seung‐Ha</creatorcontrib><creatorcontrib>Lee, Jun Ho</creatorcontrib><creatorcontrib>Chang, Sun O</creatorcontrib><creatorcontrib>Kim, Jun</creatorcontrib><creatorcontrib>Kim, Sang Jeong</creatorcontrib><title>Lobule‐specific membrane excitability of cerebellar Purkinje cells</title><title>The Journal of physiology</title><addtitle>J Physiol</addtitle><description>Non‐technical summary Cerebellar vermis consists of 10 lobules, and each lobule receives different sensory information. Afferent inputs are integrated in cerebellar Purkinje cells (PCs) which are the sole output of the cerebellar cortex. We show that intrinsic membrane properties are widely different between PCs in the spinocerebellum (lobules III–V) and vestibulocerebellum (lobule X).
Cerebellar Purkinje cells (PCs) are the sole output of the cerebellar cortex and function as key to a variety of learning‐related behaviours by integrating multimodal afferent inputs. Intrinsic membrane excitability of neurons determines the input–output relationship, and therefore governs the functions of neural circuits. Cerebellar vermis consists of ten lobules (lobules I–X), and each lobule receives different sensory information. However, lobule‐specific differences of electrophysiological properties of PC are incompletely understood. To address this question, we performed a systematic comparison of membrane properties of PCs from different lobules (lobules III–V vs. X). Two types of firing patterns (tonic firing and complex bursting) were identified in response to depolarizing current injections in lobule III–V PCs, whereas four distinct firing patterns (tonic firing, complex bursting, initial bursting and gap firing) were observed in lobule X. A‐type K+ current and early inactivation of fast Na+ conductance with activation of 4‐aminopyridine‐sensitive conductances were shown to be responsible for the formation of gap firing and initial bursting patterns, respectively, which were observed only in lobule X. In response to current injection, PCs in lobule X spiked with wider dynamic range. These differences in firing pattern and membrane properties probably contribute to signal processing of afferent inputs in lobule‐specific fashion, and particularly diversity of discharge patterns in lobule X, as a part of the vestibulocerebellum, might be involved in strict coordination of a precise temporal response to a wide range of head movements.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Cell Membrane - physiology</subject><subject>Cerebral Cortex - anatomy & histology</subject><subject>Cerebral Cortex - physiology</subject><subject>Electric Stimulation</subject><subject>Electrophysiological Phenomena - physiology</subject><subject>Membrane Potentials - physiology</subject><subject>Models, Animal</subject><subject>Neurons, Afferent - physiology</subject><subject>Neuroscience</subject><subject>Patch-Clamp Techniques</subject><subject>Purkinje Cells - physiology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhS0EokPhDRCKxAI2GWxfx3E2SFUpfxqJLsrasp1r6sGJB3sCnR2PwDPyJGQ0bQUsECtL1985uuceQh4zumSMwYv15nJXQopLThlbcs6UkHfIggnZ1W3bwV2yoJTzGtqGHZEHpawpZUC77j454pwqkJQuyKtVslPEn99_lA264IOrBhxsNiNWeOXC1tgQw3ZXJV85zGgxRpOr8yl_DuMa51mM5SG5500s-Oj6PSYfX59dnL6tVx_evDs9WdWuUULUymNvnUXqhQUjmRHUKmgclcyC64zr0bvWWo_gQfQAoDrbK3QgZC9nzTF5efDdTHbA3uG4zSbqTQ6DyTudTNB__ozhUn9KXzVw1VApZoNn1wY5fZmwbPUQyj7CHDdNRXdMyk62fE8-_yfJgIOiwKWa0ad_oes05XE-hGaNaEBQJWGmxIFyOZWS0d-uzajeF6pvCtX7QvWh0Fn25PfIt6KbBmegOwDfQsTdf5nqi_fnQrUCfgFUXbNZ</recordid><startdate>20120115</startdate><enddate>20120115</enddate><creator>Kim, Chang‐Hee</creator><creator>Oh, Seung‐Ha</creator><creator>Lee, Jun Ho</creator><creator>Chang, Sun O</creator><creator>Kim, Jun</creator><creator>Kim, Sang Jeong</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>Blackwell Science Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120115</creationdate><title>Lobule‐specific membrane excitability of cerebellar Purkinje cells</title><author>Kim, Chang‐Hee ; Oh, Seung‐Ha ; Lee, Jun Ho ; Chang, Sun O ; Kim, Jun ; Kim, Sang Jeong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5844-8fedbcbe0f4b3a61a40b835c061b3c9acdefc7bbfe3f34d33389bd8ec346d64b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Cell Membrane - physiology</topic><topic>Cerebral Cortex - anatomy & histology</topic><topic>Cerebral Cortex - physiology</topic><topic>Electric Stimulation</topic><topic>Electrophysiological Phenomena - physiology</topic><topic>Membrane Potentials - physiology</topic><topic>Models, Animal</topic><topic>Neurons, Afferent - physiology</topic><topic>Neuroscience</topic><topic>Patch-Clamp Techniques</topic><topic>Purkinje Cells - physiology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Chang‐Hee</creatorcontrib><creatorcontrib>Oh, Seung‐Ha</creatorcontrib><creatorcontrib>Lee, Jun Ho</creatorcontrib><creatorcontrib>Chang, Sun O</creatorcontrib><creatorcontrib>Kim, Jun</creatorcontrib><creatorcontrib>Kim, Sang Jeong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Chang‐Hee</au><au>Oh, Seung‐Ha</au><au>Lee, Jun Ho</au><au>Chang, Sun O</au><au>Kim, Jun</au><au>Kim, Sang Jeong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lobule‐specific membrane excitability of cerebellar Purkinje cells</atitle><jtitle>The Journal of physiology</jtitle><addtitle>J Physiol</addtitle><date>2012-01-15</date><risdate>2012</risdate><volume>590</volume><issue>2</issue><spage>273</spage><epage>288</epage><pages>273-288</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><coden>JPHYA7</coden><abstract>Non‐technical summary Cerebellar vermis consists of 10 lobules, and each lobule receives different sensory information. Afferent inputs are integrated in cerebellar Purkinje cells (PCs) which are the sole output of the cerebellar cortex. We show that intrinsic membrane properties are widely different between PCs in the spinocerebellum (lobules III–V) and vestibulocerebellum (lobule X).
Cerebellar Purkinje cells (PCs) are the sole output of the cerebellar cortex and function as key to a variety of learning‐related behaviours by integrating multimodal afferent inputs. Intrinsic membrane excitability of neurons determines the input–output relationship, and therefore governs the functions of neural circuits. Cerebellar vermis consists of ten lobules (lobules I–X), and each lobule receives different sensory information. However, lobule‐specific differences of electrophysiological properties of PC are incompletely understood. To address this question, we performed a systematic comparison of membrane properties of PCs from different lobules (lobules III–V vs. X). Two types of firing patterns (tonic firing and complex bursting) were identified in response to depolarizing current injections in lobule III–V PCs, whereas four distinct firing patterns (tonic firing, complex bursting, initial bursting and gap firing) were observed in lobule X. A‐type K+ current and early inactivation of fast Na+ conductance with activation of 4‐aminopyridine‐sensitive conductances were shown to be responsible for the formation of gap firing and initial bursting patterns, respectively, which were observed only in lobule X. In response to current injection, PCs in lobule X spiked with wider dynamic range. These differences in firing pattern and membrane properties probably contribute to signal processing of afferent inputs in lobule‐specific fashion, and particularly diversity of discharge patterns in lobule X, as a part of the vestibulocerebellum, might be involved in strict coordination of a precise temporal response to a wide range of head movements.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22083600</pmid><doi>10.1113/jphysiol.2011.221846</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3751 |
ispartof | The Journal of physiology, 2012-01, Vol.590 (2), p.273-288 |
issn | 0022-3751 1469-7793 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3285064 |
source | Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Action Potentials - physiology Animals Cell Membrane - physiology Cerebral Cortex - anatomy & histology Cerebral Cortex - physiology Electric Stimulation Electrophysiological Phenomena - physiology Membrane Potentials - physiology Models, Animal Neurons, Afferent - physiology Neuroscience Patch-Clamp Techniques Purkinje Cells - physiology Rats Rats, Sprague-Dawley |
title | Lobule‐specific membrane excitability of cerebellar Purkinje cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A27%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lobule%E2%80%90specific%20membrane%20excitability%20of%20cerebellar%20Purkinje%20cells&rft.jtitle=The%20Journal%20of%20physiology&rft.au=Kim,%20Chang%E2%80%90Hee&rft.date=2012-01-15&rft.volume=590&rft.issue=2&rft.spage=273&rft.epage=288&rft.pages=273-288&rft.issn=0022-3751&rft.eissn=1469-7793&rft.coden=JPHYA7&rft_id=info:doi/10.1113/jphysiol.2011.221846&rft_dat=%3Cproquest_pubme%3E1323803268%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545340863&rft_id=info:pmid/22083600&rfr_iscdi=true |