Lobule‐specific membrane excitability of cerebellar Purkinje cells

Non‐technical summary  Cerebellar vermis consists of 10 lobules, and each lobule receives different sensory information. Afferent inputs are integrated in cerebellar Purkinje cells (PCs) which are the sole output of the cerebellar cortex. We show that intrinsic membrane properties are widely differe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of physiology 2012-01, Vol.590 (2), p.273-288
Hauptverfasser: Kim, Chang‐Hee, Oh, Seung‐Ha, Lee, Jun Ho, Chang, Sun O, Kim, Jun, Kim, Sang Jeong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 288
container_issue 2
container_start_page 273
container_title The Journal of physiology
container_volume 590
creator Kim, Chang‐Hee
Oh, Seung‐Ha
Lee, Jun Ho
Chang, Sun O
Kim, Jun
Kim, Sang Jeong
description Non‐technical summary  Cerebellar vermis consists of 10 lobules, and each lobule receives different sensory information. Afferent inputs are integrated in cerebellar Purkinje cells (PCs) which are the sole output of the cerebellar cortex. We show that intrinsic membrane properties are widely different between PCs in the spinocerebellum (lobules III–V) and vestibulocerebellum (lobule X).   Cerebellar Purkinje cells (PCs) are the sole output of the cerebellar cortex and function as key to a variety of learning‐related behaviours by integrating multimodal afferent inputs. Intrinsic membrane excitability of neurons determines the input–output relationship, and therefore governs the functions of neural circuits. Cerebellar vermis consists of ten lobules (lobules I–X), and each lobule receives different sensory information. However, lobule‐specific differences of electrophysiological properties of PC are incompletely understood. To address this question, we performed a systematic comparison of membrane properties of PCs from different lobules (lobules III–V vs. X). Two types of firing patterns (tonic firing and complex bursting) were identified in response to depolarizing current injections in lobule III–V PCs, whereas four distinct firing patterns (tonic firing, complex bursting, initial bursting and gap firing) were observed in lobule X. A‐type K+ current and early inactivation of fast Na+ conductance with activation of 4‐aminopyridine‐sensitive conductances were shown to be responsible for the formation of gap firing and initial bursting patterns, respectively, which were observed only in lobule X. In response to current injection, PCs in lobule X spiked with wider dynamic range. These differences in firing pattern and membrane properties probably contribute to signal processing of afferent inputs in lobule‐specific fashion, and particularly diversity of discharge patterns in lobule X, as a part of the vestibulocerebellum, might be involved in strict coordination of a precise temporal response to a wide range of head movements.
doi_str_mv 10.1113/jphysiol.2011.221846
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3285064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1323803268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5844-8fedbcbe0f4b3a61a40b835c061b3c9acdefc7bbfe3f34d33389bd8ec346d64b3</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS0EokPhDRCKxAI2GWxfx3E2SFUpfxqJLsrasp1r6sGJB3sCnR2PwDPyJGQ0bQUsECtL1985uuceQh4zumSMwYv15nJXQopLThlbcs6UkHfIggnZ1W3bwV2yoJTzGtqGHZEHpawpZUC77j454pwqkJQuyKtVslPEn99_lA264IOrBhxsNiNWeOXC1tgQw3ZXJV85zGgxRpOr8yl_DuMa51mM5SG5500s-Oj6PSYfX59dnL6tVx_evDs9WdWuUULUymNvnUXqhQUjmRHUKmgclcyC64zr0bvWWo_gQfQAoDrbK3QgZC9nzTF5efDdTHbA3uG4zSbqTQ6DyTudTNB__ozhUn9KXzVw1VApZoNn1wY5fZmwbPUQyj7CHDdNRXdMyk62fE8-_yfJgIOiwKWa0ad_oes05XE-hGaNaEBQJWGmxIFyOZWS0d-uzajeF6pvCtX7QvWh0Fn25PfIt6KbBmegOwDfQsTdf5nqi_fnQrUCfgFUXbNZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545340863</pqid></control><display><type>article</type><title>Lobule‐specific membrane excitability of cerebellar Purkinje cells</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kim, Chang‐Hee ; Oh, Seung‐Ha ; Lee, Jun Ho ; Chang, Sun O ; Kim, Jun ; Kim, Sang Jeong</creator><creatorcontrib>Kim, Chang‐Hee ; Oh, Seung‐Ha ; Lee, Jun Ho ; Chang, Sun O ; Kim, Jun ; Kim, Sang Jeong</creatorcontrib><description>Non‐technical summary  Cerebellar vermis consists of 10 lobules, and each lobule receives different sensory information. Afferent inputs are integrated in cerebellar Purkinje cells (PCs) which are the sole output of the cerebellar cortex. We show that intrinsic membrane properties are widely different between PCs in the spinocerebellum (lobules III–V) and vestibulocerebellum (lobule X).   Cerebellar Purkinje cells (PCs) are the sole output of the cerebellar cortex and function as key to a variety of learning‐related behaviours by integrating multimodal afferent inputs. Intrinsic membrane excitability of neurons determines the input–output relationship, and therefore governs the functions of neural circuits. Cerebellar vermis consists of ten lobules (lobules I–X), and each lobule receives different sensory information. However, lobule‐specific differences of electrophysiological properties of PC are incompletely understood. To address this question, we performed a systematic comparison of membrane properties of PCs from different lobules (lobules III–V vs. X). Two types of firing patterns (tonic firing and complex bursting) were identified in response to depolarizing current injections in lobule III–V PCs, whereas four distinct firing patterns (tonic firing, complex bursting, initial bursting and gap firing) were observed in lobule X. A‐type K+ current and early inactivation of fast Na+ conductance with activation of 4‐aminopyridine‐sensitive conductances were shown to be responsible for the formation of gap firing and initial bursting patterns, respectively, which were observed only in lobule X. In response to current injection, PCs in lobule X spiked with wider dynamic range. These differences in firing pattern and membrane properties probably contribute to signal processing of afferent inputs in lobule‐specific fashion, and particularly diversity of discharge patterns in lobule X, as a part of the vestibulocerebellum, might be involved in strict coordination of a precise temporal response to a wide range of head movements.</description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1113/jphysiol.2011.221846</identifier><identifier>PMID: 22083600</identifier><identifier>CODEN: JPHYA7</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Action Potentials - physiology ; Animals ; Cell Membrane - physiology ; Cerebral Cortex - anatomy &amp; histology ; Cerebral Cortex - physiology ; Electric Stimulation ; Electrophysiological Phenomena - physiology ; Membrane Potentials - physiology ; Models, Animal ; Neurons, Afferent - physiology ; Neuroscience ; Patch-Clamp Techniques ; Purkinje Cells - physiology ; Rats ; Rats, Sprague-Dawley</subject><ispartof>The Journal of physiology, 2012-01, Vol.590 (2), p.273-288</ispartof><rights>2012 The Authors. The Journal of Physiology © 2012 The Physiological Society</rights><rights>2012 The Authors. The Journal of Physiology © 2012 The Physiological Society 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5844-8fedbcbe0f4b3a61a40b835c061b3c9acdefc7bbfe3f34d33389bd8ec346d64b3</citedby><cites>FETCH-LOGICAL-c5844-8fedbcbe0f4b3a61a40b835c061b3c9acdefc7bbfe3f34d33389bd8ec346d64b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3285064/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3285064/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22083600$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Chang‐Hee</creatorcontrib><creatorcontrib>Oh, Seung‐Ha</creatorcontrib><creatorcontrib>Lee, Jun Ho</creatorcontrib><creatorcontrib>Chang, Sun O</creatorcontrib><creatorcontrib>Kim, Jun</creatorcontrib><creatorcontrib>Kim, Sang Jeong</creatorcontrib><title>Lobule‐specific membrane excitability of cerebellar Purkinje cells</title><title>The Journal of physiology</title><addtitle>J Physiol</addtitle><description>Non‐technical summary  Cerebellar vermis consists of 10 lobules, and each lobule receives different sensory information. Afferent inputs are integrated in cerebellar Purkinje cells (PCs) which are the sole output of the cerebellar cortex. We show that intrinsic membrane properties are widely different between PCs in the spinocerebellum (lobules III–V) and vestibulocerebellum (lobule X).   Cerebellar Purkinje cells (PCs) are the sole output of the cerebellar cortex and function as key to a variety of learning‐related behaviours by integrating multimodal afferent inputs. Intrinsic membrane excitability of neurons determines the input–output relationship, and therefore governs the functions of neural circuits. Cerebellar vermis consists of ten lobules (lobules I–X), and each lobule receives different sensory information. However, lobule‐specific differences of electrophysiological properties of PC are incompletely understood. To address this question, we performed a systematic comparison of membrane properties of PCs from different lobules (lobules III–V vs. X). Two types of firing patterns (tonic firing and complex bursting) were identified in response to depolarizing current injections in lobule III–V PCs, whereas four distinct firing patterns (tonic firing, complex bursting, initial bursting and gap firing) were observed in lobule X. A‐type K+ current and early inactivation of fast Na+ conductance with activation of 4‐aminopyridine‐sensitive conductances were shown to be responsible for the formation of gap firing and initial bursting patterns, respectively, which were observed only in lobule X. In response to current injection, PCs in lobule X spiked with wider dynamic range. These differences in firing pattern and membrane properties probably contribute to signal processing of afferent inputs in lobule‐specific fashion, and particularly diversity of discharge patterns in lobule X, as a part of the vestibulocerebellum, might be involved in strict coordination of a precise temporal response to a wide range of head movements.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Cell Membrane - physiology</subject><subject>Cerebral Cortex - anatomy &amp; histology</subject><subject>Cerebral Cortex - physiology</subject><subject>Electric Stimulation</subject><subject>Electrophysiological Phenomena - physiology</subject><subject>Membrane Potentials - physiology</subject><subject>Models, Animal</subject><subject>Neurons, Afferent - physiology</subject><subject>Neuroscience</subject><subject>Patch-Clamp Techniques</subject><subject>Purkinje Cells - physiology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhS0EokPhDRCKxAI2GWxfx3E2SFUpfxqJLsrasp1r6sGJB3sCnR2PwDPyJGQ0bQUsECtL1985uuceQh4zumSMwYv15nJXQopLThlbcs6UkHfIggnZ1W3bwV2yoJTzGtqGHZEHpawpZUC77j454pwqkJQuyKtVslPEn99_lA264IOrBhxsNiNWeOXC1tgQw3ZXJV85zGgxRpOr8yl_DuMa51mM5SG5500s-Oj6PSYfX59dnL6tVx_evDs9WdWuUULUymNvnUXqhQUjmRHUKmgclcyC64zr0bvWWo_gQfQAoDrbK3QgZC9nzTF5efDdTHbA3uG4zSbqTQ6DyTudTNB__ozhUn9KXzVw1VApZoNn1wY5fZmwbPUQyj7CHDdNRXdMyk62fE8-_yfJgIOiwKWa0ad_oes05XE-hGaNaEBQJWGmxIFyOZWS0d-uzajeF6pvCtX7QvWh0Fn25PfIt6KbBmegOwDfQsTdf5nqi_fnQrUCfgFUXbNZ</recordid><startdate>20120115</startdate><enddate>20120115</enddate><creator>Kim, Chang‐Hee</creator><creator>Oh, Seung‐Ha</creator><creator>Lee, Jun Ho</creator><creator>Chang, Sun O</creator><creator>Kim, Jun</creator><creator>Kim, Sang Jeong</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>Blackwell Science Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120115</creationdate><title>Lobule‐specific membrane excitability of cerebellar Purkinje cells</title><author>Kim, Chang‐Hee ; Oh, Seung‐Ha ; Lee, Jun Ho ; Chang, Sun O ; Kim, Jun ; Kim, Sang Jeong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5844-8fedbcbe0f4b3a61a40b835c061b3c9acdefc7bbfe3f34d33389bd8ec346d64b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Cell Membrane - physiology</topic><topic>Cerebral Cortex - anatomy &amp; histology</topic><topic>Cerebral Cortex - physiology</topic><topic>Electric Stimulation</topic><topic>Electrophysiological Phenomena - physiology</topic><topic>Membrane Potentials - physiology</topic><topic>Models, Animal</topic><topic>Neurons, Afferent - physiology</topic><topic>Neuroscience</topic><topic>Patch-Clamp Techniques</topic><topic>Purkinje Cells - physiology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Chang‐Hee</creatorcontrib><creatorcontrib>Oh, Seung‐Ha</creatorcontrib><creatorcontrib>Lee, Jun Ho</creatorcontrib><creatorcontrib>Chang, Sun O</creatorcontrib><creatorcontrib>Kim, Jun</creatorcontrib><creatorcontrib>Kim, Sang Jeong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Chang‐Hee</au><au>Oh, Seung‐Ha</au><au>Lee, Jun Ho</au><au>Chang, Sun O</au><au>Kim, Jun</au><au>Kim, Sang Jeong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lobule‐specific membrane excitability of cerebellar Purkinje cells</atitle><jtitle>The Journal of physiology</jtitle><addtitle>J Physiol</addtitle><date>2012-01-15</date><risdate>2012</risdate><volume>590</volume><issue>2</issue><spage>273</spage><epage>288</epage><pages>273-288</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><coden>JPHYA7</coden><abstract>Non‐technical summary  Cerebellar vermis consists of 10 lobules, and each lobule receives different sensory information. Afferent inputs are integrated in cerebellar Purkinje cells (PCs) which are the sole output of the cerebellar cortex. We show that intrinsic membrane properties are widely different between PCs in the spinocerebellum (lobules III–V) and vestibulocerebellum (lobule X).   Cerebellar Purkinje cells (PCs) are the sole output of the cerebellar cortex and function as key to a variety of learning‐related behaviours by integrating multimodal afferent inputs. Intrinsic membrane excitability of neurons determines the input–output relationship, and therefore governs the functions of neural circuits. Cerebellar vermis consists of ten lobules (lobules I–X), and each lobule receives different sensory information. However, lobule‐specific differences of electrophysiological properties of PC are incompletely understood. To address this question, we performed a systematic comparison of membrane properties of PCs from different lobules (lobules III–V vs. X). Two types of firing patterns (tonic firing and complex bursting) were identified in response to depolarizing current injections in lobule III–V PCs, whereas four distinct firing patterns (tonic firing, complex bursting, initial bursting and gap firing) were observed in lobule X. A‐type K+ current and early inactivation of fast Na+ conductance with activation of 4‐aminopyridine‐sensitive conductances were shown to be responsible for the formation of gap firing and initial bursting patterns, respectively, which were observed only in lobule X. In response to current injection, PCs in lobule X spiked with wider dynamic range. These differences in firing pattern and membrane properties probably contribute to signal processing of afferent inputs in lobule‐specific fashion, and particularly diversity of discharge patterns in lobule X, as a part of the vestibulocerebellum, might be involved in strict coordination of a precise temporal response to a wide range of head movements.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22083600</pmid><doi>10.1113/jphysiol.2011.221846</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3751
ispartof The Journal of physiology, 2012-01, Vol.590 (2), p.273-288
issn 0022-3751
1469-7793
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3285064
source Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Action Potentials - physiology
Animals
Cell Membrane - physiology
Cerebral Cortex - anatomy & histology
Cerebral Cortex - physiology
Electric Stimulation
Electrophysiological Phenomena - physiology
Membrane Potentials - physiology
Models, Animal
Neurons, Afferent - physiology
Neuroscience
Patch-Clamp Techniques
Purkinje Cells - physiology
Rats
Rats, Sprague-Dawley
title Lobule‐specific membrane excitability of cerebellar Purkinje cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A27%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lobule%E2%80%90specific%20membrane%20excitability%20of%20cerebellar%20Purkinje%20cells&rft.jtitle=The%20Journal%20of%20physiology&rft.au=Kim,%20Chang%E2%80%90Hee&rft.date=2012-01-15&rft.volume=590&rft.issue=2&rft.spage=273&rft.epage=288&rft.pages=273-288&rft.issn=0022-3751&rft.eissn=1469-7793&rft.coden=JPHYA7&rft_id=info:doi/10.1113/jphysiol.2011.221846&rft_dat=%3Cproquest_pubme%3E1323803268%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545340863&rft_id=info:pmid/22083600&rfr_iscdi=true