A comprehensive assessment of cerebellar damage in multiple sclerosis using diffusion tractography and volumetric analysis

Background: White matter (WM) and grey matter (GM) brain damage in multiple sclerosis (MS) is widespread, but the extent of cerebellar involvement and impact on disability needs to be clarified. Objective: This study aimed to assess cerebellar WM and GM atrophy and the degree of fibre coherence in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multiple sclerosis 2011-09, Vol.17 (9), p.1079-1087
Hauptverfasser: Anderson, VM, Wheeler-Kingshott, CAM, Abdel-Aziz, K, Miller, DH, Toosy, A, Thompson, AJ, Ciccarelli, O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: White matter (WM) and grey matter (GM) brain damage in multiple sclerosis (MS) is widespread, but the extent of cerebellar involvement and impact on disability needs to be clarified. Objective: This study aimed to assess cerebellar WM and GM atrophy and the degree of fibre coherence in the main cerebellar connections, and their contribution to disability in relapsing–remitting MS (RRMS) and primary progressive MS (PPMS). Methods: Fourteen patients with RRMS, 12 patients with PPMS and 16 healthy controls were recruited. Cerebellar WM and GM volumes and tractography-derived measures from the middle and superior cerebellar peduncles, including fractional anisotropy (FA), mean diffusivity (MD), and directional diffusivities, were quantified from magnetic resonance imaging (MRI). Patients were assessed on clinical scores, including the MS Functional Composite score subtests. Linear regression models were used to compare imaging measures between 12 RRMS, 11 PPMS and 16 controls, and investigate their association with clinical scores. Results: Patients with PPMS showed reduced FA and increased radial diffusivity in the middle cerebellar peduncle compared with controls and patients with RRMS. In PPMS, lower cerebellar WM volume was associated with worse performance on the upper limb test. In the same patient group, we found significant relationships between superior cerebellar peduncle FA and upper limb function, and between superior cerebellar peduncle FA, MD and radial diffusivity and speed of walking. Conclusion: These findings indicate reduced fibre coherence in the main cerebellar connections, and link damage in the whole cerebellar WM, and, in particular, in the superior cerebellar peduncle, to motor deficit in PPMS.
ISSN:1352-4585
1477-0970
DOI:10.1177/1352458511403528