How can grafted breast cancer models be optimized?

Breast cancer is the most frequent spontaneous malignancy diagnosed in women and is characterized by a broad histological diversity. Progression of the disease has a metastasizing trend and can be resistant to hormonal and chemotherapy. Animal models have provided some understanding of these feature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer biology & therapy 2011-11, Vol.12 (10), p.855-864
Hauptverfasser: Mollard, Séverine, Mousseau, Yoanne, Baaj, Yasser, Richard, Laurence, Cook-Moreau, Jeanne, Monteil, Jacques, Funalot, Benoît, Sturtz, Franck G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 864
container_issue 10
container_start_page 855
container_title Cancer biology & therapy
container_volume 12
creator Mollard, Séverine
Mousseau, Yoanne
Baaj, Yasser
Richard, Laurence
Cook-Moreau, Jeanne
Monteil, Jacques
Funalot, Benoît
Sturtz, Franck G.
description Breast cancer is the most frequent spontaneous malignancy diagnosed in women and is characterized by a broad histological diversity. Progression of the disease has a metastasizing trend and can be resistant to hormonal and chemotherapy. Animal models have provided some understanding of these features and have allowed new treatments to be proposed. However, these models need to be revised because they have some limitations in predicting the clinical efficacy of new therapies. In this review, we discuss the biological criteria to be taken into account for a realistic animal model of breast cancer graft (tumor implantation site, animal immune status, histological diversity, modern imaging). We emphasize the need for more stringent monitoring criteria, and suggest adopting the human RECIST (Response Evaluation Criteria in Solid Tumors) criteria to evaluate treatments in animal models.
doi_str_mv 10.4161/cbt.12.10.18139
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3280900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>912796436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-f6abaf98fea77921d6ff50ec1bf219ab25725fa42505fe507f6732dd58f8e80d3</originalsourceid><addsrcrecordid>eNqNkc1vFSEUxYnR2A9duzOzczWvXGYYBhea-lJtkyYmpq4JA5eKmRmewLNp__oyvvqsCxNXcOF3zz0cCHkFdNVCBydmyCtgq1JCD418Qg6Bc173XHRPl33T1y1txQE5Suk7pUywTj4nB4xRLhiIQ8LOw01l9FxdR-0y2mqIqFNejgzGagoWx1QNWIVN9pO_Q_v-BXnm9Jjw5cN6TL5-PLtan9eXnz9drE8va8OZyLXr9KCd7B1qISQD2znHKRoYHAOpB1YccKdbxil3yKlwnWiYtbx3PfbUNsfk3U53sx0mtAbnHPWoNtFPOt6qoL36-2b239R1-Kka1lNJaRF48yAQw48tpqwmnwyOo54xbJOSwITs2qYr5MmONDGkFNHtpwBVS9CqBK2ALeWvoEvH68fm9vzvZAsAO6BMs5gGH5LxWEL9g1KA9YerVrbiC6iNdf_Rs9jQMXsz4t7I212Pn12Ik74JcbQq69sxRBfLL_qkmn-94h7NSrDr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912796436</pqid></control><display><type>article</type><title>How can grafted breast cancer models be optimized?</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Mollard, Séverine ; Mousseau, Yoanne ; Baaj, Yasser ; Richard, Laurence ; Cook-Moreau, Jeanne ; Monteil, Jacques ; Funalot, Benoît ; Sturtz, Franck G.</creator><creatorcontrib>Mollard, Séverine ; Mousseau, Yoanne ; Baaj, Yasser ; Richard, Laurence ; Cook-Moreau, Jeanne ; Monteil, Jacques ; Funalot, Benoît ; Sturtz, Franck G.</creatorcontrib><description>Breast cancer is the most frequent spontaneous malignancy diagnosed in women and is characterized by a broad histological diversity. Progression of the disease has a metastasizing trend and can be resistant to hormonal and chemotherapy. Animal models have provided some understanding of these features and have allowed new treatments to be proposed. However, these models need to be revised because they have some limitations in predicting the clinical efficacy of new therapies. In this review, we discuss the biological criteria to be taken into account for a realistic animal model of breast cancer graft (tumor implantation site, animal immune status, histological diversity, modern imaging). We emphasize the need for more stringent monitoring criteria, and suggest adopting the human RECIST (Response Evaluation Criteria in Solid Tumors) criteria to evaluate treatments in animal models.</description><identifier>ISSN: 1538-4047</identifier><identifier>EISSN: 1555-8576</identifier><identifier>DOI: 10.4161/cbt.12.10.18139</identifier><identifier>PMID: 22057217</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>animal model ; Animals ; Antineoplastic Agents - therapeutic use ; Binding ; Biology ; Bioscience ; breast cancer ; Breast Neoplasms - diagnosis ; Breast Neoplasms - drug therapy ; Calcium ; Cancer ; Cell ; Cycle ; Disease Models, Animal ; Female ; Humans ; Landes ; monitoring ; Neoplasm Transplantation ; Organogenesis ; orthotopic graft ; Proteins ; Review ; syngeneic ; Treatment Outcome ; Xenograft Model Antitumor Assays</subject><ispartof>Cancer biology &amp; therapy, 2011-11, Vol.12 (10), p.855-864</ispartof><rights>Copyright © 2011 Landes Bioscience 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-f6abaf98fea77921d6ff50ec1bf219ab25725fa42505fe507f6732dd58f8e80d3</citedby><cites>FETCH-LOGICAL-c527t-f6abaf98fea77921d6ff50ec1bf219ab25725fa42505fe507f6732dd58f8e80d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280900/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280900/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22057217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mollard, Séverine</creatorcontrib><creatorcontrib>Mousseau, Yoanne</creatorcontrib><creatorcontrib>Baaj, Yasser</creatorcontrib><creatorcontrib>Richard, Laurence</creatorcontrib><creatorcontrib>Cook-Moreau, Jeanne</creatorcontrib><creatorcontrib>Monteil, Jacques</creatorcontrib><creatorcontrib>Funalot, Benoît</creatorcontrib><creatorcontrib>Sturtz, Franck G.</creatorcontrib><title>How can grafted breast cancer models be optimized?</title><title>Cancer biology &amp; therapy</title><addtitle>Cancer Biol Ther</addtitle><description>Breast cancer is the most frequent spontaneous malignancy diagnosed in women and is characterized by a broad histological diversity. Progression of the disease has a metastasizing trend and can be resistant to hormonal and chemotherapy. Animal models have provided some understanding of these features and have allowed new treatments to be proposed. However, these models need to be revised because they have some limitations in predicting the clinical efficacy of new therapies. In this review, we discuss the biological criteria to be taken into account for a realistic animal model of breast cancer graft (tumor implantation site, animal immune status, histological diversity, modern imaging). We emphasize the need for more stringent monitoring criteria, and suggest adopting the human RECIST (Response Evaluation Criteria in Solid Tumors) criteria to evaluate treatments in animal models.</description><subject>animal model</subject><subject>Animals</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Binding</subject><subject>Biology</subject><subject>Bioscience</subject><subject>breast cancer</subject><subject>Breast Neoplasms - diagnosis</subject><subject>Breast Neoplasms - drug therapy</subject><subject>Calcium</subject><subject>Cancer</subject><subject>Cell</subject><subject>Cycle</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Humans</subject><subject>Landes</subject><subject>monitoring</subject><subject>Neoplasm Transplantation</subject><subject>Organogenesis</subject><subject>orthotopic graft</subject><subject>Proteins</subject><subject>Review</subject><subject>syngeneic</subject><subject>Treatment Outcome</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1538-4047</issn><issn>1555-8576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc1vFSEUxYnR2A9duzOzczWvXGYYBhea-lJtkyYmpq4JA5eKmRmewLNp__oyvvqsCxNXcOF3zz0cCHkFdNVCBydmyCtgq1JCD418Qg6Bc173XHRPl33T1y1txQE5Suk7pUywTj4nB4xRLhiIQ8LOw01l9FxdR-0y2mqIqFNejgzGagoWx1QNWIVN9pO_Q_v-BXnm9Jjw5cN6TL5-PLtan9eXnz9drE8va8OZyLXr9KCd7B1qISQD2znHKRoYHAOpB1YccKdbxil3yKlwnWiYtbx3PfbUNsfk3U53sx0mtAbnHPWoNtFPOt6qoL36-2b239R1-Kka1lNJaRF48yAQw48tpqwmnwyOo54xbJOSwITs2qYr5MmONDGkFNHtpwBVS9CqBK2ALeWvoEvH68fm9vzvZAsAO6BMs5gGH5LxWEL9g1KA9YerVrbiC6iNdf_Rs9jQMXsz4t7I212Pn12Ik74JcbQq69sxRBfLL_qkmn-94h7NSrDr</recordid><startdate>20111115</startdate><enddate>20111115</enddate><creator>Mollard, Séverine</creator><creator>Mousseau, Yoanne</creator><creator>Baaj, Yasser</creator><creator>Richard, Laurence</creator><creator>Cook-Moreau, Jeanne</creator><creator>Monteil, Jacques</creator><creator>Funalot, Benoît</creator><creator>Sturtz, Franck G.</creator><general>Taylor &amp; Francis</general><general>Landes Bioscience</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111115</creationdate><title>How can grafted breast cancer models be optimized?</title><author>Mollard, Séverine ; Mousseau, Yoanne ; Baaj, Yasser ; Richard, Laurence ; Cook-Moreau, Jeanne ; Monteil, Jacques ; Funalot, Benoît ; Sturtz, Franck G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-f6abaf98fea77921d6ff50ec1bf219ab25725fa42505fe507f6732dd58f8e80d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>animal model</topic><topic>Animals</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Binding</topic><topic>Biology</topic><topic>Bioscience</topic><topic>breast cancer</topic><topic>Breast Neoplasms - diagnosis</topic><topic>Breast Neoplasms - drug therapy</topic><topic>Calcium</topic><topic>Cancer</topic><topic>Cell</topic><topic>Cycle</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Humans</topic><topic>Landes</topic><topic>monitoring</topic><topic>Neoplasm Transplantation</topic><topic>Organogenesis</topic><topic>orthotopic graft</topic><topic>Proteins</topic><topic>Review</topic><topic>syngeneic</topic><topic>Treatment Outcome</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mollard, Séverine</creatorcontrib><creatorcontrib>Mousseau, Yoanne</creatorcontrib><creatorcontrib>Baaj, Yasser</creatorcontrib><creatorcontrib>Richard, Laurence</creatorcontrib><creatorcontrib>Cook-Moreau, Jeanne</creatorcontrib><creatorcontrib>Monteil, Jacques</creatorcontrib><creatorcontrib>Funalot, Benoît</creatorcontrib><creatorcontrib>Sturtz, Franck G.</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer biology &amp; therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mollard, Séverine</au><au>Mousseau, Yoanne</au><au>Baaj, Yasser</au><au>Richard, Laurence</au><au>Cook-Moreau, Jeanne</au><au>Monteil, Jacques</au><au>Funalot, Benoît</au><au>Sturtz, Franck G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How can grafted breast cancer models be optimized?</atitle><jtitle>Cancer biology &amp; therapy</jtitle><addtitle>Cancer Biol Ther</addtitle><date>2011-11-15</date><risdate>2011</risdate><volume>12</volume><issue>10</issue><spage>855</spage><epage>864</epage><pages>855-864</pages><issn>1538-4047</issn><eissn>1555-8576</eissn><abstract>Breast cancer is the most frequent spontaneous malignancy diagnosed in women and is characterized by a broad histological diversity. Progression of the disease has a metastasizing trend and can be resistant to hormonal and chemotherapy. Animal models have provided some understanding of these features and have allowed new treatments to be proposed. However, these models need to be revised because they have some limitations in predicting the clinical efficacy of new therapies. In this review, we discuss the biological criteria to be taken into account for a realistic animal model of breast cancer graft (tumor implantation site, animal immune status, histological diversity, modern imaging). We emphasize the need for more stringent monitoring criteria, and suggest adopting the human RECIST (Response Evaluation Criteria in Solid Tumors) criteria to evaluate treatments in animal models.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>22057217</pmid><doi>10.4161/cbt.12.10.18139</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1538-4047
ispartof Cancer biology & therapy, 2011-11, Vol.12 (10), p.855-864
issn 1538-4047
1555-8576
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3280900
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects animal model
Animals
Antineoplastic Agents - therapeutic use
Binding
Biology
Bioscience
breast cancer
Breast Neoplasms - diagnosis
Breast Neoplasms - drug therapy
Calcium
Cancer
Cell
Cycle
Disease Models, Animal
Female
Humans
Landes
monitoring
Neoplasm Transplantation
Organogenesis
orthotopic graft
Proteins
Review
syngeneic
Treatment Outcome
Xenograft Model Antitumor Assays
title How can grafted breast cancer models be optimized?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A04%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20can%20grafted%20breast%20cancer%20models%20be%20optimized?&rft.jtitle=Cancer%20biology%20&%20therapy&rft.au=Mollard,%20S%C3%A9verine&rft.date=2011-11-15&rft.volume=12&rft.issue=10&rft.spage=855&rft.epage=864&rft.pages=855-864&rft.issn=1538-4047&rft.eissn=1555-8576&rft_id=info:doi/10.4161/cbt.12.10.18139&rft_dat=%3Cproquest_pubme%3E912796436%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912796436&rft_id=info:pmid/22057217&rfr_iscdi=true