Mad2 and Mad3 Cooperate to Arrest Budding Yeast in Mitosis

The spindle checkpoint ensures accurate chromosome transmission by delaying chromosome segregation until all chromosomes are correctly aligned on the mitotic spindle. The checkpoint is activated by kinetochores that are not attached to microtubules or are attached but not under tension and arrests c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2012-02, Vol.22 (3), p.180-190
Hauptverfasser: Lau, Derek T.C., Murray, Andrew W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 190
container_issue 3
container_start_page 180
container_title Current biology
container_volume 22
creator Lau, Derek T.C.
Murray, Andrew W.
description The spindle checkpoint ensures accurate chromosome transmission by delaying chromosome segregation until all chromosomes are correctly aligned on the mitotic spindle. The checkpoint is activated by kinetochores that are not attached to microtubules or are attached but not under tension and arrests cells at metaphase by inhibiting the anaphase-promoting complex (APC) and its coactivator Cdc20. Despite numerous studies, we still do not understand how the checkpoint proteins coordinate with each other to inhibit APCCdc20 activity. To ask how the checkpoint components induce metaphase arrest, we constructed fusions of checkpoint proteins and expressed them in the budding yeast Saccharomyces cerevisiae to mimic possible protein interactions during checkpoint activation. We found that expression of a Mad2-Mad3 protein fusion or noncovalently linked Mad2 and Mad3, but not the overexpression of the two separate proteins, induces metaphase arrest that is independent of functional kinetochores or other checkpoint proteins. We further showed that artificially tethering Mad2 to Cdc20 also arrests cells in metaphase independently of other checkpoint components. Our results suggest that Mad3 is required for the stable binding of Mad2 to Cdc20 in vivo, which is sufficient to inhibit APC activity and is the most downstream event in spindle checkpoint activation. ► Expression of physically linked Mad2 and Mad3 arrests cells in metaphase ► The metaphase arrest does not require other checkpoint components ► Tethering Mad2 to Cdc20 also arrests cells independently of other checkpoint proteins
doi_str_mv 10.1016/j.cub.2011.12.029
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3277655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982211014424</els_id><sourcerecordid>921144822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-af498e6b595c9f3e983032eff98b8d789274fac13b0468db544ce5412694fa623</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS1ERZfCB-ACuZVLgj2xHRukSmXVUqRWHKAHTpZjTxavduPFTir12-N2SwWXnvzvN8_z5hHyhtGGUSY_rBs39w1QxhoGDQX9jCyY6nRNORfPyYJqSWutAA7Jy5zXlDJQWr4ghwBAtQC1IB-vrIfKjr4qm7ZaxrjDZCesplidpoR5qj7P3odxVf1EW05hrK7CFHPIr8jBYDcZXz-sR-T6_OzH8qK-_Pbl6_L0snaia6faDlwrlL3QwumhRa1a2gIOg1a98p3S0PHBOtb2lEvle8G5Q8EZSF3uJbRH5GSvu5v7LXqH45TsxuxS2Np0a6IN5v-XMfwyq3hjWug6KUQROH4QSPH3XCyZbcgONxs7Ypyz0cAY52VMhXz_JFmmzoBJSWlB2R51KeaccHhsiNE7Tpq1KemYu3QMA1PSKTVv_3XyWPE3jgK82wODjcauUsjm-ntRELT8qMS9l097AsvEbwImk13A0aEPCd1kfAxPNPAHDGSnNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1011216600</pqid></control><display><type>article</type><title>Mad2 and Mad3 Cooperate to Arrest Budding Yeast in Mitosis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lau, Derek T.C. ; Murray, Andrew W.</creator><creatorcontrib>Lau, Derek T.C. ; Murray, Andrew W.</creatorcontrib><description>The spindle checkpoint ensures accurate chromosome transmission by delaying chromosome segregation until all chromosomes are correctly aligned on the mitotic spindle. The checkpoint is activated by kinetochores that are not attached to microtubules or are attached but not under tension and arrests cells at metaphase by inhibiting the anaphase-promoting complex (APC) and its coactivator Cdc20. Despite numerous studies, we still do not understand how the checkpoint proteins coordinate with each other to inhibit APCCdc20 activity. To ask how the checkpoint components induce metaphase arrest, we constructed fusions of checkpoint proteins and expressed them in the budding yeast Saccharomyces cerevisiae to mimic possible protein interactions during checkpoint activation. We found that expression of a Mad2-Mad3 protein fusion or noncovalently linked Mad2 and Mad3, but not the overexpression of the two separate proteins, induces metaphase arrest that is independent of functional kinetochores or other checkpoint proteins. We further showed that artificially tethering Mad2 to Cdc20 also arrests cells in metaphase independently of other checkpoint components. Our results suggest that Mad3 is required for the stable binding of Mad2 to Cdc20 in vivo, which is sufficient to inhibit APC activity and is the most downstream event in spindle checkpoint activation. ► Expression of physically linked Mad2 and Mad3 arrests cells in metaphase ► The metaphase arrest does not require other checkpoint components ► Tethering Mad2 to Cdc20 also arrests cells independently of other checkpoint proteins</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2011.12.029</identifier><identifier>PMID: 22209528</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Anaphase-promoting complex ; Cdc20 Proteins ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell Cycle Proteins - physiology ; chromosome segregation ; chromosome transmission ; Chromosomes ; Fusion protein ; gene overexpression ; I Kappa B epsilon protein ; Kinetochores ; M Phase Cell Cycle Checkpoints ; Mad2 Proteins ; Metaphase ; Microtubules ; Mitosis ; mitotic spindle apparatus ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Nuclear Proteins - physiology ; Protein interaction ; protein synthesis ; proteins ; Recombinant Fusion Proteins ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Saccharomyces cerevisiae Proteins - physiology ; Spindle Apparatus - metabolism ; Spindle Apparatus - ultrastructure ; Spindles ; yeasts</subject><ispartof>Current biology, 2012-02, Vol.22 (3), p.180-190</ispartof><rights>2012 Elsevier Ltd</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><rights>2011 Elsevier Inc. All rights reserved. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-af498e6b595c9f3e983032eff98b8d789274fac13b0468db544ce5412694fa623</citedby><cites>FETCH-LOGICAL-c573t-af498e6b595c9f3e983032eff98b8d789274fac13b0468db544ce5412694fa623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cub.2011.12.029$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22209528$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lau, Derek T.C.</creatorcontrib><creatorcontrib>Murray, Andrew W.</creatorcontrib><title>Mad2 and Mad3 Cooperate to Arrest Budding Yeast in Mitosis</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>The spindle checkpoint ensures accurate chromosome transmission by delaying chromosome segregation until all chromosomes are correctly aligned on the mitotic spindle. The checkpoint is activated by kinetochores that are not attached to microtubules or are attached but not under tension and arrests cells at metaphase by inhibiting the anaphase-promoting complex (APC) and its coactivator Cdc20. Despite numerous studies, we still do not understand how the checkpoint proteins coordinate with each other to inhibit APCCdc20 activity. To ask how the checkpoint components induce metaphase arrest, we constructed fusions of checkpoint proteins and expressed them in the budding yeast Saccharomyces cerevisiae to mimic possible protein interactions during checkpoint activation. We found that expression of a Mad2-Mad3 protein fusion or noncovalently linked Mad2 and Mad3, but not the overexpression of the two separate proteins, induces metaphase arrest that is independent of functional kinetochores or other checkpoint proteins. We further showed that artificially tethering Mad2 to Cdc20 also arrests cells in metaphase independently of other checkpoint components. Our results suggest that Mad3 is required for the stable binding of Mad2 to Cdc20 in vivo, which is sufficient to inhibit APC activity and is the most downstream event in spindle checkpoint activation. ► Expression of physically linked Mad2 and Mad3 arrests cells in metaphase ► The metaphase arrest does not require other checkpoint components ► Tethering Mad2 to Cdc20 also arrests cells independently of other checkpoint proteins</description><subject>Anaphase-promoting complex</subject><subject>Cdc20 Proteins</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Cycle Proteins - physiology</subject><subject>chromosome segregation</subject><subject>chromosome transmission</subject><subject>Chromosomes</subject><subject>Fusion protein</subject><subject>gene overexpression</subject><subject>I Kappa B epsilon protein</subject><subject>Kinetochores</subject><subject>M Phase Cell Cycle Checkpoints</subject><subject>Mad2 Proteins</subject><subject>Metaphase</subject><subject>Microtubules</subject><subject>Mitosis</subject><subject>mitotic spindle apparatus</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Nuclear Proteins - physiology</subject><subject>Protein interaction</subject><subject>protein synthesis</subject><subject>proteins</subject><subject>Recombinant Fusion Proteins</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - physiology</subject><subject>Spindle Apparatus - metabolism</subject><subject>Spindle Apparatus - ultrastructure</subject><subject>Spindles</subject><subject>yeasts</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9v1DAQxS1ERZfCB-ACuZVLgj2xHRukSmXVUqRWHKAHTpZjTxavduPFTir12-N2SwWXnvzvN8_z5hHyhtGGUSY_rBs39w1QxhoGDQX9jCyY6nRNORfPyYJqSWutAA7Jy5zXlDJQWr4ghwBAtQC1IB-vrIfKjr4qm7ZaxrjDZCesplidpoR5qj7P3odxVf1EW05hrK7CFHPIr8jBYDcZXz-sR-T6_OzH8qK-_Pbl6_L0snaia6faDlwrlL3QwumhRa1a2gIOg1a98p3S0PHBOtb2lEvle8G5Q8EZSF3uJbRH5GSvu5v7LXqH45TsxuxS2Np0a6IN5v-XMfwyq3hjWug6KUQROH4QSPH3XCyZbcgONxs7Ypyz0cAY52VMhXz_JFmmzoBJSWlB2R51KeaccHhsiNE7Tpq1KemYu3QMA1PSKTVv_3XyWPE3jgK82wODjcauUsjm-ntRELT8qMS9l097AsvEbwImk13A0aEPCd1kfAxPNPAHDGSnNw</recordid><startdate>20120207</startdate><enddate>20120207</enddate><creator>Lau, Derek T.C.</creator><creator>Murray, Andrew W.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120207</creationdate><title>Mad2 and Mad3 Cooperate to Arrest Budding Yeast in Mitosis</title><author>Lau, Derek T.C. ; Murray, Andrew W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-af498e6b595c9f3e983032eff98b8d789274fac13b0468db544ce5412694fa623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Anaphase-promoting complex</topic><topic>Cdc20 Proteins</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Cycle Proteins - physiology</topic><topic>chromosome segregation</topic><topic>chromosome transmission</topic><topic>Chromosomes</topic><topic>Fusion protein</topic><topic>gene overexpression</topic><topic>I Kappa B epsilon protein</topic><topic>Kinetochores</topic><topic>M Phase Cell Cycle Checkpoints</topic><topic>Mad2 Proteins</topic><topic>Metaphase</topic><topic>Microtubules</topic><topic>Mitosis</topic><topic>mitotic spindle apparatus</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Nuclear Proteins - physiology</topic><topic>Protein interaction</topic><topic>protein synthesis</topic><topic>proteins</topic><topic>Recombinant Fusion Proteins</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - physiology</topic><topic>Spindle Apparatus - metabolism</topic><topic>Spindle Apparatus - ultrastructure</topic><topic>Spindles</topic><topic>yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lau, Derek T.C.</creatorcontrib><creatorcontrib>Murray, Andrew W.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lau, Derek T.C.</au><au>Murray, Andrew W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mad2 and Mad3 Cooperate to Arrest Budding Yeast in Mitosis</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2012-02-07</date><risdate>2012</risdate><volume>22</volume><issue>3</issue><spage>180</spage><epage>190</epage><pages>180-190</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>The spindle checkpoint ensures accurate chromosome transmission by delaying chromosome segregation until all chromosomes are correctly aligned on the mitotic spindle. The checkpoint is activated by kinetochores that are not attached to microtubules or are attached but not under tension and arrests cells at metaphase by inhibiting the anaphase-promoting complex (APC) and its coactivator Cdc20. Despite numerous studies, we still do not understand how the checkpoint proteins coordinate with each other to inhibit APCCdc20 activity. To ask how the checkpoint components induce metaphase arrest, we constructed fusions of checkpoint proteins and expressed them in the budding yeast Saccharomyces cerevisiae to mimic possible protein interactions during checkpoint activation. We found that expression of a Mad2-Mad3 protein fusion or noncovalently linked Mad2 and Mad3, but not the overexpression of the two separate proteins, induces metaphase arrest that is independent of functional kinetochores or other checkpoint proteins. We further showed that artificially tethering Mad2 to Cdc20 also arrests cells in metaphase independently of other checkpoint components. Our results suggest that Mad3 is required for the stable binding of Mad2 to Cdc20 in vivo, which is sufficient to inhibit APC activity and is the most downstream event in spindle checkpoint activation. ► Expression of physically linked Mad2 and Mad3 arrests cells in metaphase ► The metaphase arrest does not require other checkpoint components ► Tethering Mad2 to Cdc20 also arrests cells independently of other checkpoint proteins</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>22209528</pmid><doi>10.1016/j.cub.2011.12.029</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-9822
ispartof Current biology, 2012-02, Vol.22 (3), p.180-190
issn 0960-9822
1879-0445
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3277655
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Anaphase-promoting complex
Cdc20 Proteins
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Cell Cycle Proteins - physiology
chromosome segregation
chromosome transmission
Chromosomes
Fusion protein
gene overexpression
I Kappa B epsilon protein
Kinetochores
M Phase Cell Cycle Checkpoints
Mad2 Proteins
Metaphase
Microtubules
Mitosis
mitotic spindle apparatus
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Nuclear Proteins - physiology
Protein interaction
protein synthesis
proteins
Recombinant Fusion Proteins
Saccharomyces cerevisiae
Saccharomyces cerevisiae - cytology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Saccharomyces cerevisiae Proteins - physiology
Spindle Apparatus - metabolism
Spindle Apparatus - ultrastructure
Spindles
yeasts
title Mad2 and Mad3 Cooperate to Arrest Budding Yeast in Mitosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mad2%20and%20Mad3%20Cooperate%20to%20Arrest%20Budding%20Yeast%20in%20Mitosis&rft.jtitle=Current%20biology&rft.au=Lau,%20Derek%C2%A0T.C.&rft.date=2012-02-07&rft.volume=22&rft.issue=3&rft.spage=180&rft.epage=190&rft.pages=180-190&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2011.12.029&rft_dat=%3Cproquest_pubme%3E921144822%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1011216600&rft_id=info:pmid/22209528&rft_els_id=S0960982211014424&rfr_iscdi=true