Heterooligomeric complexes of human small heat shock proteins

Oligomeric association of human small heat shock proteins HspBl, HspB5, HspB6 and HspB8 was analyzed by means of size-exclusion chromatography, analytical ultracentrifugation and chemical cross-linking. Wild-type HspBl and Cys mutants of HspB5, HspB6 and HspB8 containing a single Cys residue in posi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell stress & chaperones 2012-03, Vol.17 (2), p.157-169
Hauptverfasser: Mymrikov, Evgeny V., Seit-Nebi, Alim S., Gusev, Nikolai B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 169
container_issue 2
container_start_page 157
container_title Cell stress & chaperones
container_volume 17
creator Mymrikov, Evgeny V.
Seit-Nebi, Alim S.
Gusev, Nikolai B.
description Oligomeric association of human small heat shock proteins HspBl, HspB5, HspB6 and HspB8 was analyzed by means of size-exclusion chromatography, analytical ultracentrifugation and chemical cross-linking. Wild-type HspBl and Cys mutants of HspB5, HspB6 and HspB8 containing a single Cys residue in position homologous to that of Cys137 of human HspB1 were able to generate heterodimers cross-linked by disulfide bond. Cross-linked heterodimers between HspB1/HspB5, HspB1/HspB6 and HspB5/HspB6 were easily produced upon mixing, whereas formation of any heterodimers with participation of HspB8 was significantly less efficient. The size of heterooligomers formed by HspB1/HspB6 and HspB5/HspB6 was different from the size of the corresponding homooligomers. Disulfide cross-linked homodimers of small heat shock proteins were unable to participate in heterooligomer formation. Thus, monomers can be involved in subunit exchange leading to heterooligomer formation and restriction of flexibility induced by disulfide cross-linking prevents subunit exchange.
doi_str_mv 10.1007/s12192-011-0296-0
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3273557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41412298</jstor_id><sourcerecordid>41412298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-4dc8c23886958664ce4c39947f741096d8946875aa78185962819497671b6f173</originalsourceid><addsrcrecordid>eNp9kUlPwzAQhS0Eomw_gAMo4sIp4HG8HkBCiE1C4gJny3WdNiWJi50g-Pe4CpTlwMkjzfeeZ-YhtA_4BDAWpxEIKJJjgBwTxXO8hraAcp4D4XI91QVjuQTKRmg7xjlOGiFgE40IwZgwqrbQ2a3rXPC-rqa-caGymfXNonZvLma-zGZ9Y9osNqaus5kzXRZn3j5ni-A7V7VxF22Upo5u7_PdQU_XV4-Xt_n9w83d5cV9bqnkXU4nVlpSSMkVk5xT66gtlKKiFBSw4hOpKJeCGSMkSKY4kaCoElzAmJcgih10Pvgu-nHjJta1XTC1XoSqMeFde1Pp3522mumpf9UFEekGS4PjT4PgX3oXO91U0bq6Nq3zfdSK4IJzzEgij_6Qc9-HNm23hLBgHNMEwQDZ4GMMrlyNAlgvo9FDNDpFo5fRaJw0hz93WCm-skgAGYCYWu3Uhe-f_3M9GETz2PmwMqVAgRAliw_D96FH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920075604</pqid></control><display><type>article</type><title>Heterooligomeric complexes of human small heat shock proteins</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><source>SpringerLink Journals - AutoHoldings</source><creator>Mymrikov, Evgeny V. ; Seit-Nebi, Alim S. ; Gusev, Nikolai B.</creator><creatorcontrib>Mymrikov, Evgeny V. ; Seit-Nebi, Alim S. ; Gusev, Nikolai B.</creatorcontrib><description>Oligomeric association of human small heat shock proteins HspBl, HspB5, HspB6 and HspB8 was analyzed by means of size-exclusion chromatography, analytical ultracentrifugation and chemical cross-linking. Wild-type HspBl and Cys mutants of HspB5, HspB6 and HspB8 containing a single Cys residue in position homologous to that of Cys137 of human HspB1 were able to generate heterodimers cross-linked by disulfide bond. Cross-linked heterodimers between HspB1/HspB5, HspB1/HspB6 and HspB5/HspB6 were easily produced upon mixing, whereas formation of any heterodimers with participation of HspB8 was significantly less efficient. The size of heterooligomers formed by HspB1/HspB6 and HspB5/HspB6 was different from the size of the corresponding homooligomers. Disulfide cross-linked homodimers of small heat shock proteins were unable to participate in heterooligomer formation. Thus, monomers can be involved in subunit exchange leading to heterooligomer formation and restriction of flexibility induced by disulfide cross-linking prevents subunit exchange.</description><identifier>ISSN: 1355-8145</identifier><identifier>EISSN: 1466-1268</identifier><identifier>DOI: 10.1007/s12192-011-0296-0</identifier><identifier>PMID: 22002549</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Cell Biology ; Chromatography ; Cross-Linking Reagents - chemistry ; Dimers ; Disulfides ; Electrophoresis ; Electrophoresis, Gel, Two-Dimensional ; Elution ; Heat-Shock Proteins ; Heat-Shock Proteins, Small - chemistry ; Heat-Shock Proteins, Small - genetics ; Heat-Shock Proteins, Small - metabolism ; HSP27 Heat-Shock Proteins - chemistry ; HSP27 Heat-Shock Proteins - genetics ; HSP27 Heat-Shock Proteins - metabolism ; Humans ; Immunology ; Models, Biological ; Molecular Chaperones ; Monomers ; Multiprotein Complexes - chemistry ; Multiprotein Complexes - metabolism ; Neurosciences ; Oligomers ; Original Paper ; Oxidation ; Oxidation-Reduction ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Small heat shock proteins ; Ultracentrifugation</subject><ispartof>Cell stress &amp; chaperones, 2012-03, Vol.17 (2), p.157-169</ispartof><rights>2012 Cell Stress Society International</rights><rights>Cell Stress Society International 2011</rights><rights>Cell Stress Society International 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-4dc8c23886958664ce4c39947f741096d8946875aa78185962819497671b6f173</citedby><cites>FETCH-LOGICAL-c486t-4dc8c23886958664ce4c39947f741096d8946875aa78185962819497671b6f173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41412298$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41412298$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,41464,42533,51294,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22002549$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mymrikov, Evgeny V.</creatorcontrib><creatorcontrib>Seit-Nebi, Alim S.</creatorcontrib><creatorcontrib>Gusev, Nikolai B.</creatorcontrib><title>Heterooligomeric complexes of human small heat shock proteins</title><title>Cell stress &amp; chaperones</title><addtitle>Cell Stress and Chaperones</addtitle><addtitle>Cell Stress Chaperones</addtitle><description>Oligomeric association of human small heat shock proteins HspBl, HspB5, HspB6 and HspB8 was analyzed by means of size-exclusion chromatography, analytical ultracentrifugation and chemical cross-linking. Wild-type HspBl and Cys mutants of HspB5, HspB6 and HspB8 containing a single Cys residue in position homologous to that of Cys137 of human HspB1 were able to generate heterodimers cross-linked by disulfide bond. Cross-linked heterodimers between HspB1/HspB5, HspB1/HspB6 and HspB5/HspB6 were easily produced upon mixing, whereas formation of any heterodimers with participation of HspB8 was significantly less efficient. The size of heterooligomers formed by HspB1/HspB6 and HspB5/HspB6 was different from the size of the corresponding homooligomers. Disulfide cross-linked homodimers of small heat shock proteins were unable to participate in heterooligomer formation. Thus, monomers can be involved in subunit exchange leading to heterooligomer formation and restriction of flexibility induced by disulfide cross-linking prevents subunit exchange.</description><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Chromatography</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>Dimers</subject><subject>Disulfides</subject><subject>Electrophoresis</subject><subject>Electrophoresis, Gel, Two-Dimensional</subject><subject>Elution</subject><subject>Heat-Shock Proteins</subject><subject>Heat-Shock Proteins, Small - chemistry</subject><subject>Heat-Shock Proteins, Small - genetics</subject><subject>Heat-Shock Proteins, Small - metabolism</subject><subject>HSP27 Heat-Shock Proteins - chemistry</subject><subject>HSP27 Heat-Shock Proteins - genetics</subject><subject>HSP27 Heat-Shock Proteins - metabolism</subject><subject>Humans</subject><subject>Immunology</subject><subject>Models, Biological</subject><subject>Molecular Chaperones</subject><subject>Monomers</subject><subject>Multiprotein Complexes - chemistry</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Neurosciences</subject><subject>Oligomers</subject><subject>Original Paper</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Small heat shock proteins</subject><subject>Ultracentrifugation</subject><issn>1355-8145</issn><issn>1466-1268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUlPwzAQhS0Eomw_gAMo4sIp4HG8HkBCiE1C4gJny3WdNiWJi50g-Pe4CpTlwMkjzfeeZ-YhtA_4BDAWpxEIKJJjgBwTxXO8hraAcp4D4XI91QVjuQTKRmg7xjlOGiFgE40IwZgwqrbQ2a3rXPC-rqa-caGymfXNonZvLma-zGZ9Y9osNqaus5kzXRZn3j5ni-A7V7VxF22Upo5u7_PdQU_XV4-Xt_n9w83d5cV9bqnkXU4nVlpSSMkVk5xT66gtlKKiFBSw4hOpKJeCGSMkSKY4kaCoElzAmJcgih10Pvgu-nHjJta1XTC1XoSqMeFde1Pp3522mumpf9UFEekGS4PjT4PgX3oXO91U0bq6Nq3zfdSK4IJzzEgij_6Qc9-HNm23hLBgHNMEwQDZ4GMMrlyNAlgvo9FDNDpFo5fRaJw0hz93WCm-skgAGYCYWu3Uhe-f_3M9GETz2PmwMqVAgRAliw_D96FH</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Mymrikov, Evgeny V.</creator><creator>Seit-Nebi, Alim S.</creator><creator>Gusev, Nikolai B.</creator><general>Springer</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120301</creationdate><title>Heterooligomeric complexes of human small heat shock proteins</title><author>Mymrikov, Evgeny V. ; Seit-Nebi, Alim S. ; Gusev, Nikolai B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-4dc8c23886958664ce4c39947f741096d8946875aa78185962819497671b6f173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Chromatography</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>Dimers</topic><topic>Disulfides</topic><topic>Electrophoresis</topic><topic>Electrophoresis, Gel, Two-Dimensional</topic><topic>Elution</topic><topic>Heat-Shock Proteins</topic><topic>Heat-Shock Proteins, Small - chemistry</topic><topic>Heat-Shock Proteins, Small - genetics</topic><topic>Heat-Shock Proteins, Small - metabolism</topic><topic>HSP27 Heat-Shock Proteins - chemistry</topic><topic>HSP27 Heat-Shock Proteins - genetics</topic><topic>HSP27 Heat-Shock Proteins - metabolism</topic><topic>Humans</topic><topic>Immunology</topic><topic>Models, Biological</topic><topic>Molecular Chaperones</topic><topic>Monomers</topic><topic>Multiprotein Complexes - chemistry</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Neurosciences</topic><topic>Oligomers</topic><topic>Original Paper</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Small heat shock proteins</topic><topic>Ultracentrifugation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mymrikov, Evgeny V.</creatorcontrib><creatorcontrib>Seit-Nebi, Alim S.</creatorcontrib><creatorcontrib>Gusev, Nikolai B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell stress &amp; chaperones</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mymrikov, Evgeny V.</au><au>Seit-Nebi, Alim S.</au><au>Gusev, Nikolai B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterooligomeric complexes of human small heat shock proteins</atitle><jtitle>Cell stress &amp; chaperones</jtitle><stitle>Cell Stress and Chaperones</stitle><addtitle>Cell Stress Chaperones</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>17</volume><issue>2</issue><spage>157</spage><epage>169</epage><pages>157-169</pages><issn>1355-8145</issn><eissn>1466-1268</eissn><abstract>Oligomeric association of human small heat shock proteins HspBl, HspB5, HspB6 and HspB8 was analyzed by means of size-exclusion chromatography, analytical ultracentrifugation and chemical cross-linking. Wild-type HspBl and Cys mutants of HspB5, HspB6 and HspB8 containing a single Cys residue in position homologous to that of Cys137 of human HspB1 were able to generate heterodimers cross-linked by disulfide bond. Cross-linked heterodimers between HspB1/HspB5, HspB1/HspB6 and HspB5/HspB6 were easily produced upon mixing, whereas formation of any heterodimers with participation of HspB8 was significantly less efficient. The size of heterooligomers formed by HspB1/HspB6 and HspB5/HspB6 was different from the size of the corresponding homooligomers. Disulfide cross-linked homodimers of small heat shock proteins were unable to participate in heterooligomer formation. Thus, monomers can be involved in subunit exchange leading to heterooligomer formation and restriction of flexibility induced by disulfide cross-linking prevents subunit exchange.</abstract><cop>Dordrecht</cop><pub>Springer</pub><pmid>22002549</pmid><doi>10.1007/s12192-011-0296-0</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1355-8145
ispartof Cell stress & chaperones, 2012-03, Vol.17 (2), p.157-169
issn 1355-8145
1466-1268
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3273557
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; EZB Electronic Journals Library; SpringerLink Journals - AutoHoldings
subjects Biochemistry
Biomedical and Life Sciences
Biomedicine
Cancer Research
Cell Biology
Chromatography
Cross-Linking Reagents - chemistry
Dimers
Disulfides
Electrophoresis
Electrophoresis, Gel, Two-Dimensional
Elution
Heat-Shock Proteins
Heat-Shock Proteins, Small - chemistry
Heat-Shock Proteins, Small - genetics
Heat-Shock Proteins, Small - metabolism
HSP27 Heat-Shock Proteins - chemistry
HSP27 Heat-Shock Proteins - genetics
HSP27 Heat-Shock Proteins - metabolism
Humans
Immunology
Models, Biological
Molecular Chaperones
Monomers
Multiprotein Complexes - chemistry
Multiprotein Complexes - metabolism
Neurosciences
Oligomers
Original Paper
Oxidation
Oxidation-Reduction
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Small heat shock proteins
Ultracentrifugation
title Heterooligomeric complexes of human small heat shock proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A02%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterooligomeric%20complexes%20of%20human%20small%20heat%20shock%20proteins&rft.jtitle=Cell%20stress%20&%20chaperones&rft.au=Mymrikov,%20Evgeny%20V.&rft.date=2012-03-01&rft.volume=17&rft.issue=2&rft.spage=157&rft.epage=169&rft.pages=157-169&rft.issn=1355-8145&rft.eissn=1466-1268&rft_id=info:doi/10.1007/s12192-011-0296-0&rft_dat=%3Cjstor_pubme%3E41412298%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920075604&rft_id=info:pmid/22002549&rft_jstor_id=41412298&rfr_iscdi=true