Mitophagy Plays an Essential Role in Reducing Mitochondrial Production of Reactive Oxygen Species and Mutation of Mitochondrial DNA by Maintaining Mitochondrial Quantity and Quality in Yeast
In mammalian cells, the autophagy-dependent degradation of mitochondria (mitophagy) is thought to maintain mitochondrial quality by eliminating damaged mitochondria. However, the physiological importance of mitophagy has not been clarified in yeast. Here, we investigated the physiological role of mi...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2012-01, Vol.287 (5), p.3265-3272 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3272 |
---|---|
container_issue | 5 |
container_start_page | 3265 |
container_title | The Journal of biological chemistry |
container_volume | 287 |
creator | Kurihara, Yusuke Kanki, Tomotake Aoki, Yoshimasa Hirota, Yuko Saigusa, Tetsu Uchiumi, Takeshi Kang, Dongchon |
description | In mammalian cells, the autophagy-dependent degradation of mitochondria (mitophagy) is thought to maintain mitochondrial quality by eliminating damaged mitochondria. However, the physiological importance of mitophagy has not been clarified in yeast. Here, we investigated the physiological role of mitophagy in yeast using mitophagy-deficient atg32- or atg11-knock-out cells. When wild-type yeast cells in respiratory growth encounter nitrogen starvation, mitophagy is initiated, excess mitochondria are degraded, and reactive oxygen species (ROS) production from mitochondria is suppressed; as a result, the mitochondria escape oxidative damage. On the other hand, in nitrogen-starved mitophagy-deficient yeast, excess mitochondria are not degraded and the undegraded mitochondria spontaneously age and produce surplus ROS. The surplus ROS damage the mitochondria themselves and the damaged mitochondria produce more ROS in a vicious circle, ultimately leading to mitochondrial DNA deletion and the so-called “petite-mutant” phenotype. Cells strictly regulate mitochondrial quantity and quality because mitochondria produce both necessary energy and harmful ROS. Mitophagy contributes to this process by eliminating the mitochondria to a basal level to fulfill cellular energy requirements and preventing excess ROS production.
Background: The physiological importance of mitophagy in yeast has been largely unexplored.
Results: Mitochondrial DNA deletion frequently occurs in mitophagy-deficient cells during nitrogen starvation because of overproduction of the reactive oxygen species from unregulated mitochondria.
Conclusion: Mitophagy prevents excess reactive oxygen species production and mitochondrial DNA mutation.
Significance: Our findings provide insight into mitophagy-related disorders such as Parkinson disease. |
doi_str_mv | 10.1074/jbc.M111.280156 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3270981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002192582048278X</els_id><sourcerecordid>918932113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-e1baa10c3e1d19dc33d8d7faa3e8c0be031dbc321da5c1bba2376a585df2e4653</originalsourceid><addsrcrecordid>eNp1kVFv0zAQxyMEYmXwzBvyG0_pfHHTJC9I0zYY0srGAAmerIt9bT2ldrGdavlyfDYcuk1MCEuWz76f_3e6f5a9Bj4FXs2Oblo1XQDAtKg5lPMn2QR4LXJRwven2YTzAvKmKOuD7EUINzytWQPPs4OigLLiUE2yXwsT3XaNq4FddTgEhpadhUA2GuzYteuIGcuuSffK2BUbabV2VvsxfeVdeo_GWeaWCcIU74hd3g4rsuzLlpShUVGzRR_xnnuscfrpmLUDW6CxMe1_i3zuMTUThz866dKNcerpB2GIL7NnS-wCvbo7D7Nv78--npznF5cfPp4cX-SqbCDmBC0icCUINDRaCaFrXS0RBdWKt8QF6FaJAjSWCtoWC1HNsaxLvSxoNi_FYfZur7vt2w1plebjsZNbbzboB-nQyMcZa9Zy5XZSFBVvakgCb-8EvPvZU4hyY4KirkNLrg-ygbpJ9UEk8mhPKu9C8LR8qAJcjqbLZLocTZd709OPN38398Dfu5yAZg9QGtHOkJchOWMVaeNJRamd-a_4b0pXweo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>918932113</pqid></control><display><type>article</type><title>Mitophagy Plays an Essential Role in Reducing Mitochondrial Production of Reactive Oxygen Species and Mutation of Mitochondrial DNA by Maintaining Mitochondrial Quantity and Quality in Yeast</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Kurihara, Yusuke ; Kanki, Tomotake ; Aoki, Yoshimasa ; Hirota, Yuko ; Saigusa, Tetsu ; Uchiumi, Takeshi ; Kang, Dongchon</creator><creatorcontrib>Kurihara, Yusuke ; Kanki, Tomotake ; Aoki, Yoshimasa ; Hirota, Yuko ; Saigusa, Tetsu ; Uchiumi, Takeshi ; Kang, Dongchon</creatorcontrib><description>In mammalian cells, the autophagy-dependent degradation of mitochondria (mitophagy) is thought to maintain mitochondrial quality by eliminating damaged mitochondria. However, the physiological importance of mitophagy has not been clarified in yeast. Here, we investigated the physiological role of mitophagy in yeast using mitophagy-deficient atg32- or atg11-knock-out cells. When wild-type yeast cells in respiratory growth encounter nitrogen starvation, mitophagy is initiated, excess mitochondria are degraded, and reactive oxygen species (ROS) production from mitochondria is suppressed; as a result, the mitochondria escape oxidative damage. On the other hand, in nitrogen-starved mitophagy-deficient yeast, excess mitochondria are not degraded and the undegraded mitochondria spontaneously age and produce surplus ROS. The surplus ROS damage the mitochondria themselves and the damaged mitochondria produce more ROS in a vicious circle, ultimately leading to mitochondrial DNA deletion and the so-called “petite-mutant” phenotype. Cells strictly regulate mitochondrial quantity and quality because mitochondria produce both necessary energy and harmful ROS. Mitophagy contributes to this process by eliminating the mitochondria to a basal level to fulfill cellular energy requirements and preventing excess ROS production.
Background: The physiological importance of mitophagy in yeast has been largely unexplored.
Results: Mitochondrial DNA deletion frequently occurs in mitophagy-deficient cells during nitrogen starvation because of overproduction of the reactive oxygen species from unregulated mitochondria.
Conclusion: Mitophagy prevents excess reactive oxygen species production and mitochondrial DNA mutation.
Significance: Our findings provide insight into mitophagy-related disorders such as Parkinson disease.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M111.280156</identifier><identifier>PMID: 22157017</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Atg32 ; Autophagy ; Autophagy-Related Proteins ; Cell Biology ; DNA, Fungal - genetics ; DNA, Fungal - metabolism ; DNA, Mitochondrial - genetics ; DNA, Mitochondrial - metabolism ; Energy Metabolism - physiology ; Mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitophagy ; Protein Degradation ; Reactive Oxygen Species (ROS) ; Reactive Oxygen Species - metabolism ; Receptors, Cytoplasmic and Nuclear - genetics ; Receptors, Cytoplasmic and Nuclear - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Vesicular Transport Proteins - genetics ; Vesicular Transport Proteins - metabolism ; Yeast</subject><ispartof>The Journal of biological chemistry, 2012-01, Vol.287 (5), p.3265-3272</ispartof><rights>2012 © 2012 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2012 by The American Society for Biochemistry and Molecular Biology, Inc. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-e1baa10c3e1d19dc33d8d7faa3e8c0be031dbc321da5c1bba2376a585df2e4653</citedby><cites>FETCH-LOGICAL-c591t-e1baa10c3e1d19dc33d8d7faa3e8c0be031dbc321da5c1bba2376a585df2e4653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3270981/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3270981/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27915,27916,53782,53784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22157017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurihara, Yusuke</creatorcontrib><creatorcontrib>Kanki, Tomotake</creatorcontrib><creatorcontrib>Aoki, Yoshimasa</creatorcontrib><creatorcontrib>Hirota, Yuko</creatorcontrib><creatorcontrib>Saigusa, Tetsu</creatorcontrib><creatorcontrib>Uchiumi, Takeshi</creatorcontrib><creatorcontrib>Kang, Dongchon</creatorcontrib><title>Mitophagy Plays an Essential Role in Reducing Mitochondrial Production of Reactive Oxygen Species and Mutation of Mitochondrial DNA by Maintaining Mitochondrial Quantity and Quality in Yeast</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>In mammalian cells, the autophagy-dependent degradation of mitochondria (mitophagy) is thought to maintain mitochondrial quality by eliminating damaged mitochondria. However, the physiological importance of mitophagy has not been clarified in yeast. Here, we investigated the physiological role of mitophagy in yeast using mitophagy-deficient atg32- or atg11-knock-out cells. When wild-type yeast cells in respiratory growth encounter nitrogen starvation, mitophagy is initiated, excess mitochondria are degraded, and reactive oxygen species (ROS) production from mitochondria is suppressed; as a result, the mitochondria escape oxidative damage. On the other hand, in nitrogen-starved mitophagy-deficient yeast, excess mitochondria are not degraded and the undegraded mitochondria spontaneously age and produce surplus ROS. The surplus ROS damage the mitochondria themselves and the damaged mitochondria produce more ROS in a vicious circle, ultimately leading to mitochondrial DNA deletion and the so-called “petite-mutant” phenotype. Cells strictly regulate mitochondrial quantity and quality because mitochondria produce both necessary energy and harmful ROS. Mitophagy contributes to this process by eliminating the mitochondria to a basal level to fulfill cellular energy requirements and preventing excess ROS production.
Background: The physiological importance of mitophagy in yeast has been largely unexplored.
Results: Mitochondrial DNA deletion frequently occurs in mitophagy-deficient cells during nitrogen starvation because of overproduction of the reactive oxygen species from unregulated mitochondria.
Conclusion: Mitophagy prevents excess reactive oxygen species production and mitochondrial DNA mutation.
Significance: Our findings provide insight into mitophagy-related disorders such as Parkinson disease.</description><subject>Atg32</subject><subject>Autophagy</subject><subject>Autophagy-Related Proteins</subject><subject>Cell Biology</subject><subject>DNA, Fungal - genetics</subject><subject>DNA, Fungal - metabolism</subject><subject>DNA, Mitochondrial - genetics</subject><subject>DNA, Mitochondrial - metabolism</subject><subject>Energy Metabolism - physiology</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitophagy</subject><subject>Protein Degradation</subject><subject>Reactive Oxygen Species (ROS)</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Receptors, Cytoplasmic and Nuclear - genetics</subject><subject>Receptors, Cytoplasmic and Nuclear - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Vesicular Transport Proteins - genetics</subject><subject>Vesicular Transport Proteins - metabolism</subject><subject>Yeast</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kVFv0zAQxyMEYmXwzBvyG0_pfHHTJC9I0zYY0srGAAmerIt9bT2ldrGdavlyfDYcuk1MCEuWz76f_3e6f5a9Bj4FXs2Oblo1XQDAtKg5lPMn2QR4LXJRwven2YTzAvKmKOuD7EUINzytWQPPs4OigLLiUE2yXwsT3XaNq4FddTgEhpadhUA2GuzYteuIGcuuSffK2BUbabV2VvsxfeVdeo_GWeaWCcIU74hd3g4rsuzLlpShUVGzRR_xnnuscfrpmLUDW6CxMe1_i3zuMTUThz866dKNcerpB2GIL7NnS-wCvbo7D7Nv78--npznF5cfPp4cX-SqbCDmBC0icCUINDRaCaFrXS0RBdWKt8QF6FaJAjSWCtoWC1HNsaxLvSxoNi_FYfZur7vt2w1plebjsZNbbzboB-nQyMcZa9Zy5XZSFBVvakgCb-8EvPvZU4hyY4KirkNLrg-ygbpJ9UEk8mhPKu9C8LR8qAJcjqbLZLocTZd709OPN38398Dfu5yAZg9QGtHOkJchOWMVaeNJRamd-a_4b0pXweo</recordid><startdate>20120127</startdate><enddate>20120127</enddate><creator>Kurihara, Yusuke</creator><creator>Kanki, Tomotake</creator><creator>Aoki, Yoshimasa</creator><creator>Hirota, Yuko</creator><creator>Saigusa, Tetsu</creator><creator>Uchiumi, Takeshi</creator><creator>Kang, Dongchon</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120127</creationdate><title>Mitophagy Plays an Essential Role in Reducing Mitochondrial Production of Reactive Oxygen Species and Mutation of Mitochondrial DNA by Maintaining Mitochondrial Quantity and Quality in Yeast</title><author>Kurihara, Yusuke ; Kanki, Tomotake ; Aoki, Yoshimasa ; Hirota, Yuko ; Saigusa, Tetsu ; Uchiumi, Takeshi ; Kang, Dongchon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-e1baa10c3e1d19dc33d8d7faa3e8c0be031dbc321da5c1bba2376a585df2e4653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Atg32</topic><topic>Autophagy</topic><topic>Autophagy-Related Proteins</topic><topic>Cell Biology</topic><topic>DNA, Fungal - genetics</topic><topic>DNA, Fungal - metabolism</topic><topic>DNA, Mitochondrial - genetics</topic><topic>DNA, Mitochondrial - metabolism</topic><topic>Energy Metabolism - physiology</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitophagy</topic><topic>Protein Degradation</topic><topic>Reactive Oxygen Species (ROS)</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Receptors, Cytoplasmic and Nuclear - genetics</topic><topic>Receptors, Cytoplasmic and Nuclear - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Vesicular Transport Proteins - genetics</topic><topic>Vesicular Transport Proteins - metabolism</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurihara, Yusuke</creatorcontrib><creatorcontrib>Kanki, Tomotake</creatorcontrib><creatorcontrib>Aoki, Yoshimasa</creatorcontrib><creatorcontrib>Hirota, Yuko</creatorcontrib><creatorcontrib>Saigusa, Tetsu</creatorcontrib><creatorcontrib>Uchiumi, Takeshi</creatorcontrib><creatorcontrib>Kang, Dongchon</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurihara, Yusuke</au><au>Kanki, Tomotake</au><au>Aoki, Yoshimasa</au><au>Hirota, Yuko</au><au>Saigusa, Tetsu</au><au>Uchiumi, Takeshi</au><au>Kang, Dongchon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitophagy Plays an Essential Role in Reducing Mitochondrial Production of Reactive Oxygen Species and Mutation of Mitochondrial DNA by Maintaining Mitochondrial Quantity and Quality in Yeast</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2012-01-27</date><risdate>2012</risdate><volume>287</volume><issue>5</issue><spage>3265</spage><epage>3272</epage><pages>3265-3272</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>In mammalian cells, the autophagy-dependent degradation of mitochondria (mitophagy) is thought to maintain mitochondrial quality by eliminating damaged mitochondria. However, the physiological importance of mitophagy has not been clarified in yeast. Here, we investigated the physiological role of mitophagy in yeast using mitophagy-deficient atg32- or atg11-knock-out cells. When wild-type yeast cells in respiratory growth encounter nitrogen starvation, mitophagy is initiated, excess mitochondria are degraded, and reactive oxygen species (ROS) production from mitochondria is suppressed; as a result, the mitochondria escape oxidative damage. On the other hand, in nitrogen-starved mitophagy-deficient yeast, excess mitochondria are not degraded and the undegraded mitochondria spontaneously age and produce surplus ROS. The surplus ROS damage the mitochondria themselves and the damaged mitochondria produce more ROS in a vicious circle, ultimately leading to mitochondrial DNA deletion and the so-called “petite-mutant” phenotype. Cells strictly regulate mitochondrial quantity and quality because mitochondria produce both necessary energy and harmful ROS. Mitophagy contributes to this process by eliminating the mitochondria to a basal level to fulfill cellular energy requirements and preventing excess ROS production.
Background: The physiological importance of mitophagy in yeast has been largely unexplored.
Results: Mitochondrial DNA deletion frequently occurs in mitophagy-deficient cells during nitrogen starvation because of overproduction of the reactive oxygen species from unregulated mitochondria.
Conclusion: Mitophagy prevents excess reactive oxygen species production and mitochondrial DNA mutation.
Significance: Our findings provide insight into mitophagy-related disorders such as Parkinson disease.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22157017</pmid><doi>10.1074/jbc.M111.280156</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2012-01, Vol.287 (5), p.3265-3272 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3270981 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Atg32 Autophagy Autophagy-Related Proteins Cell Biology DNA, Fungal - genetics DNA, Fungal - metabolism DNA, Mitochondrial - genetics DNA, Mitochondrial - metabolism Energy Metabolism - physiology Mitochondria Mitochondria - genetics Mitochondria - metabolism Mitophagy Protein Degradation Reactive Oxygen Species (ROS) Reactive Oxygen Species - metabolism Receptors, Cytoplasmic and Nuclear - genetics Receptors, Cytoplasmic and Nuclear - metabolism Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Vesicular Transport Proteins - genetics Vesicular Transport Proteins - metabolism Yeast |
title | Mitophagy Plays an Essential Role in Reducing Mitochondrial Production of Reactive Oxygen Species and Mutation of Mitochondrial DNA by Maintaining Mitochondrial Quantity and Quality in Yeast |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A10%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitophagy%20Plays%20an%20Essential%20Role%20in%20Reducing%20Mitochondrial%20Production%20of%20Reactive%20Oxygen%20Species%20and%20Mutation%20of%20Mitochondrial%20DNA%20by%20Maintaining%20Mitochondrial%20Quantity%20and%20Quality%20in%20Yeast&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Kurihara,%20Yusuke&rft.date=2012-01-27&rft.volume=287&rft.issue=5&rft.spage=3265&rft.epage=3272&rft.pages=3265-3272&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M111.280156&rft_dat=%3Cproquest_pubme%3E918932113%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=918932113&rft_id=info:pmid/22157017&rft_els_id=S002192582048278X&rfr_iscdi=true |