Mitophagy Plays an Essential Role in Reducing Mitochondrial Production of Reactive Oxygen Species and Mutation of Mitochondrial DNA by Maintaining Mitochondrial Quantity and Quality in Yeast

In mammalian cells, the autophagy-dependent degradation of mitochondria (mitophagy) is thought to maintain mitochondrial quality by eliminating damaged mitochondria. However, the physiological importance of mitophagy has not been clarified in yeast. Here, we investigated the physiological role of mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2012-01, Vol.287 (5), p.3265-3272
Hauptverfasser: Kurihara, Yusuke, Kanki, Tomotake, Aoki, Yoshimasa, Hirota, Yuko, Saigusa, Tetsu, Uchiumi, Takeshi, Kang, Dongchon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3272
container_issue 5
container_start_page 3265
container_title The Journal of biological chemistry
container_volume 287
creator Kurihara, Yusuke
Kanki, Tomotake
Aoki, Yoshimasa
Hirota, Yuko
Saigusa, Tetsu
Uchiumi, Takeshi
Kang, Dongchon
description In mammalian cells, the autophagy-dependent degradation of mitochondria (mitophagy) is thought to maintain mitochondrial quality by eliminating damaged mitochondria. However, the physiological importance of mitophagy has not been clarified in yeast. Here, we investigated the physiological role of mitophagy in yeast using mitophagy-deficient atg32- or atg11-knock-out cells. When wild-type yeast cells in respiratory growth encounter nitrogen starvation, mitophagy is initiated, excess mitochondria are degraded, and reactive oxygen species (ROS) production from mitochondria is suppressed; as a result, the mitochondria escape oxidative damage. On the other hand, in nitrogen-starved mitophagy-deficient yeast, excess mitochondria are not degraded and the undegraded mitochondria spontaneously age and produce surplus ROS. The surplus ROS damage the mitochondria themselves and the damaged mitochondria produce more ROS in a vicious circle, ultimately leading to mitochondrial DNA deletion and the so-called “petite-mutant” phenotype. Cells strictly regulate mitochondrial quantity and quality because mitochondria produce both necessary energy and harmful ROS. Mitophagy contributes to this process by eliminating the mitochondria to a basal level to fulfill cellular energy requirements and preventing excess ROS production. Background: The physiological importance of mitophagy in yeast has been largely unexplored. Results: Mitochondrial DNA deletion frequently occurs in mitophagy-deficient cells during nitrogen starvation because of overproduction of the reactive oxygen species from unregulated mitochondria. Conclusion: Mitophagy prevents excess reactive oxygen species production and mitochondrial DNA mutation. Significance: Our findings provide insight into mitophagy-related disorders such as Parkinson disease.
doi_str_mv 10.1074/jbc.M111.280156
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3270981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002192582048278X</els_id><sourcerecordid>918932113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-e1baa10c3e1d19dc33d8d7faa3e8c0be031dbc321da5c1bba2376a585df2e4653</originalsourceid><addsrcrecordid>eNp1kVFv0zAQxyMEYmXwzBvyG0_pfHHTJC9I0zYY0srGAAmerIt9bT2ldrGdavlyfDYcuk1MCEuWz76f_3e6f5a9Bj4FXs2Oblo1XQDAtKg5lPMn2QR4LXJRwven2YTzAvKmKOuD7EUINzytWQPPs4OigLLiUE2yXwsT3XaNq4FddTgEhpadhUA2GuzYteuIGcuuSffK2BUbabV2VvsxfeVdeo_GWeaWCcIU74hd3g4rsuzLlpShUVGzRR_xnnuscfrpmLUDW6CxMe1_i3zuMTUThz866dKNcerpB2GIL7NnS-wCvbo7D7Nv78--npznF5cfPp4cX-SqbCDmBC0icCUINDRaCaFrXS0RBdWKt8QF6FaJAjSWCtoWC1HNsaxLvSxoNi_FYfZur7vt2w1plebjsZNbbzboB-nQyMcZa9Zy5XZSFBVvakgCb-8EvPvZU4hyY4KirkNLrg-ygbpJ9UEk8mhPKu9C8LR8qAJcjqbLZLocTZd709OPN38398Dfu5yAZg9QGtHOkJchOWMVaeNJRamd-a_4b0pXweo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>918932113</pqid></control><display><type>article</type><title>Mitophagy Plays an Essential Role in Reducing Mitochondrial Production of Reactive Oxygen Species and Mutation of Mitochondrial DNA by Maintaining Mitochondrial Quantity and Quality in Yeast</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Kurihara, Yusuke ; Kanki, Tomotake ; Aoki, Yoshimasa ; Hirota, Yuko ; Saigusa, Tetsu ; Uchiumi, Takeshi ; Kang, Dongchon</creator><creatorcontrib>Kurihara, Yusuke ; Kanki, Tomotake ; Aoki, Yoshimasa ; Hirota, Yuko ; Saigusa, Tetsu ; Uchiumi, Takeshi ; Kang, Dongchon</creatorcontrib><description>In mammalian cells, the autophagy-dependent degradation of mitochondria (mitophagy) is thought to maintain mitochondrial quality by eliminating damaged mitochondria. However, the physiological importance of mitophagy has not been clarified in yeast. Here, we investigated the physiological role of mitophagy in yeast using mitophagy-deficient atg32- or atg11-knock-out cells. When wild-type yeast cells in respiratory growth encounter nitrogen starvation, mitophagy is initiated, excess mitochondria are degraded, and reactive oxygen species (ROS) production from mitochondria is suppressed; as a result, the mitochondria escape oxidative damage. On the other hand, in nitrogen-starved mitophagy-deficient yeast, excess mitochondria are not degraded and the undegraded mitochondria spontaneously age and produce surplus ROS. The surplus ROS damage the mitochondria themselves and the damaged mitochondria produce more ROS in a vicious circle, ultimately leading to mitochondrial DNA deletion and the so-called “petite-mutant” phenotype. Cells strictly regulate mitochondrial quantity and quality because mitochondria produce both necessary energy and harmful ROS. Mitophagy contributes to this process by eliminating the mitochondria to a basal level to fulfill cellular energy requirements and preventing excess ROS production. Background: The physiological importance of mitophagy in yeast has been largely unexplored. Results: Mitochondrial DNA deletion frequently occurs in mitophagy-deficient cells during nitrogen starvation because of overproduction of the reactive oxygen species from unregulated mitochondria. Conclusion: Mitophagy prevents excess reactive oxygen species production and mitochondrial DNA mutation. Significance: Our findings provide insight into mitophagy-related disorders such as Parkinson disease.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M111.280156</identifier><identifier>PMID: 22157017</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Atg32 ; Autophagy ; Autophagy-Related Proteins ; Cell Biology ; DNA, Fungal - genetics ; DNA, Fungal - metabolism ; DNA, Mitochondrial - genetics ; DNA, Mitochondrial - metabolism ; Energy Metabolism - physiology ; Mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitophagy ; Protein Degradation ; Reactive Oxygen Species (ROS) ; Reactive Oxygen Species - metabolism ; Receptors, Cytoplasmic and Nuclear - genetics ; Receptors, Cytoplasmic and Nuclear - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Vesicular Transport Proteins - genetics ; Vesicular Transport Proteins - metabolism ; Yeast</subject><ispartof>The Journal of biological chemistry, 2012-01, Vol.287 (5), p.3265-3272</ispartof><rights>2012 © 2012 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2012 by The American Society for Biochemistry and Molecular Biology, Inc. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-e1baa10c3e1d19dc33d8d7faa3e8c0be031dbc321da5c1bba2376a585df2e4653</citedby><cites>FETCH-LOGICAL-c591t-e1baa10c3e1d19dc33d8d7faa3e8c0be031dbc321da5c1bba2376a585df2e4653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3270981/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3270981/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27915,27916,53782,53784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22157017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurihara, Yusuke</creatorcontrib><creatorcontrib>Kanki, Tomotake</creatorcontrib><creatorcontrib>Aoki, Yoshimasa</creatorcontrib><creatorcontrib>Hirota, Yuko</creatorcontrib><creatorcontrib>Saigusa, Tetsu</creatorcontrib><creatorcontrib>Uchiumi, Takeshi</creatorcontrib><creatorcontrib>Kang, Dongchon</creatorcontrib><title>Mitophagy Plays an Essential Role in Reducing Mitochondrial Production of Reactive Oxygen Species and Mutation of Mitochondrial DNA by Maintaining Mitochondrial Quantity and Quality in Yeast</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>In mammalian cells, the autophagy-dependent degradation of mitochondria (mitophagy) is thought to maintain mitochondrial quality by eliminating damaged mitochondria. However, the physiological importance of mitophagy has not been clarified in yeast. Here, we investigated the physiological role of mitophagy in yeast using mitophagy-deficient atg32- or atg11-knock-out cells. When wild-type yeast cells in respiratory growth encounter nitrogen starvation, mitophagy is initiated, excess mitochondria are degraded, and reactive oxygen species (ROS) production from mitochondria is suppressed; as a result, the mitochondria escape oxidative damage. On the other hand, in nitrogen-starved mitophagy-deficient yeast, excess mitochondria are not degraded and the undegraded mitochondria spontaneously age and produce surplus ROS. The surplus ROS damage the mitochondria themselves and the damaged mitochondria produce more ROS in a vicious circle, ultimately leading to mitochondrial DNA deletion and the so-called “petite-mutant” phenotype. Cells strictly regulate mitochondrial quantity and quality because mitochondria produce both necessary energy and harmful ROS. Mitophagy contributes to this process by eliminating the mitochondria to a basal level to fulfill cellular energy requirements and preventing excess ROS production. Background: The physiological importance of mitophagy in yeast has been largely unexplored. Results: Mitochondrial DNA deletion frequently occurs in mitophagy-deficient cells during nitrogen starvation because of overproduction of the reactive oxygen species from unregulated mitochondria. Conclusion: Mitophagy prevents excess reactive oxygen species production and mitochondrial DNA mutation. Significance: Our findings provide insight into mitophagy-related disorders such as Parkinson disease.</description><subject>Atg32</subject><subject>Autophagy</subject><subject>Autophagy-Related Proteins</subject><subject>Cell Biology</subject><subject>DNA, Fungal - genetics</subject><subject>DNA, Fungal - metabolism</subject><subject>DNA, Mitochondrial - genetics</subject><subject>DNA, Mitochondrial - metabolism</subject><subject>Energy Metabolism - physiology</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitophagy</subject><subject>Protein Degradation</subject><subject>Reactive Oxygen Species (ROS)</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Receptors, Cytoplasmic and Nuclear - genetics</subject><subject>Receptors, Cytoplasmic and Nuclear - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Vesicular Transport Proteins - genetics</subject><subject>Vesicular Transport Proteins - metabolism</subject><subject>Yeast</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kVFv0zAQxyMEYmXwzBvyG0_pfHHTJC9I0zYY0srGAAmerIt9bT2ldrGdavlyfDYcuk1MCEuWz76f_3e6f5a9Bj4FXs2Oblo1XQDAtKg5lPMn2QR4LXJRwven2YTzAvKmKOuD7EUINzytWQPPs4OigLLiUE2yXwsT3XaNq4FddTgEhpadhUA2GuzYteuIGcuuSffK2BUbabV2VvsxfeVdeo_GWeaWCcIU74hd3g4rsuzLlpShUVGzRR_xnnuscfrpmLUDW6CxMe1_i3zuMTUThz866dKNcerpB2GIL7NnS-wCvbo7D7Nv78--npznF5cfPp4cX-SqbCDmBC0icCUINDRaCaFrXS0RBdWKt8QF6FaJAjSWCtoWC1HNsaxLvSxoNi_FYfZur7vt2w1plebjsZNbbzboB-nQyMcZa9Zy5XZSFBVvakgCb-8EvPvZU4hyY4KirkNLrg-ygbpJ9UEk8mhPKu9C8LR8qAJcjqbLZLocTZd709OPN38398Dfu5yAZg9QGtHOkJchOWMVaeNJRamd-a_4b0pXweo</recordid><startdate>20120127</startdate><enddate>20120127</enddate><creator>Kurihara, Yusuke</creator><creator>Kanki, Tomotake</creator><creator>Aoki, Yoshimasa</creator><creator>Hirota, Yuko</creator><creator>Saigusa, Tetsu</creator><creator>Uchiumi, Takeshi</creator><creator>Kang, Dongchon</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120127</creationdate><title>Mitophagy Plays an Essential Role in Reducing Mitochondrial Production of Reactive Oxygen Species and Mutation of Mitochondrial DNA by Maintaining Mitochondrial Quantity and Quality in Yeast</title><author>Kurihara, Yusuke ; Kanki, Tomotake ; Aoki, Yoshimasa ; Hirota, Yuko ; Saigusa, Tetsu ; Uchiumi, Takeshi ; Kang, Dongchon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-e1baa10c3e1d19dc33d8d7faa3e8c0be031dbc321da5c1bba2376a585df2e4653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Atg32</topic><topic>Autophagy</topic><topic>Autophagy-Related Proteins</topic><topic>Cell Biology</topic><topic>DNA, Fungal - genetics</topic><topic>DNA, Fungal - metabolism</topic><topic>DNA, Mitochondrial - genetics</topic><topic>DNA, Mitochondrial - metabolism</topic><topic>Energy Metabolism - physiology</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitophagy</topic><topic>Protein Degradation</topic><topic>Reactive Oxygen Species (ROS)</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Receptors, Cytoplasmic and Nuclear - genetics</topic><topic>Receptors, Cytoplasmic and Nuclear - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Vesicular Transport Proteins - genetics</topic><topic>Vesicular Transport Proteins - metabolism</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurihara, Yusuke</creatorcontrib><creatorcontrib>Kanki, Tomotake</creatorcontrib><creatorcontrib>Aoki, Yoshimasa</creatorcontrib><creatorcontrib>Hirota, Yuko</creatorcontrib><creatorcontrib>Saigusa, Tetsu</creatorcontrib><creatorcontrib>Uchiumi, Takeshi</creatorcontrib><creatorcontrib>Kang, Dongchon</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurihara, Yusuke</au><au>Kanki, Tomotake</au><au>Aoki, Yoshimasa</au><au>Hirota, Yuko</au><au>Saigusa, Tetsu</au><au>Uchiumi, Takeshi</au><au>Kang, Dongchon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitophagy Plays an Essential Role in Reducing Mitochondrial Production of Reactive Oxygen Species and Mutation of Mitochondrial DNA by Maintaining Mitochondrial Quantity and Quality in Yeast</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2012-01-27</date><risdate>2012</risdate><volume>287</volume><issue>5</issue><spage>3265</spage><epage>3272</epage><pages>3265-3272</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>In mammalian cells, the autophagy-dependent degradation of mitochondria (mitophagy) is thought to maintain mitochondrial quality by eliminating damaged mitochondria. However, the physiological importance of mitophagy has not been clarified in yeast. Here, we investigated the physiological role of mitophagy in yeast using mitophagy-deficient atg32- or atg11-knock-out cells. When wild-type yeast cells in respiratory growth encounter nitrogen starvation, mitophagy is initiated, excess mitochondria are degraded, and reactive oxygen species (ROS) production from mitochondria is suppressed; as a result, the mitochondria escape oxidative damage. On the other hand, in nitrogen-starved mitophagy-deficient yeast, excess mitochondria are not degraded and the undegraded mitochondria spontaneously age and produce surplus ROS. The surplus ROS damage the mitochondria themselves and the damaged mitochondria produce more ROS in a vicious circle, ultimately leading to mitochondrial DNA deletion and the so-called “petite-mutant” phenotype. Cells strictly regulate mitochondrial quantity and quality because mitochondria produce both necessary energy and harmful ROS. Mitophagy contributes to this process by eliminating the mitochondria to a basal level to fulfill cellular energy requirements and preventing excess ROS production. Background: The physiological importance of mitophagy in yeast has been largely unexplored. Results: Mitochondrial DNA deletion frequently occurs in mitophagy-deficient cells during nitrogen starvation because of overproduction of the reactive oxygen species from unregulated mitochondria. Conclusion: Mitophagy prevents excess reactive oxygen species production and mitochondrial DNA mutation. Significance: Our findings provide insight into mitophagy-related disorders such as Parkinson disease.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22157017</pmid><doi>10.1074/jbc.M111.280156</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2012-01, Vol.287 (5), p.3265-3272
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3270981
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Atg32
Autophagy
Autophagy-Related Proteins
Cell Biology
DNA, Fungal - genetics
DNA, Fungal - metabolism
DNA, Mitochondrial - genetics
DNA, Mitochondrial - metabolism
Energy Metabolism - physiology
Mitochondria
Mitochondria - genetics
Mitochondria - metabolism
Mitophagy
Protein Degradation
Reactive Oxygen Species (ROS)
Reactive Oxygen Species - metabolism
Receptors, Cytoplasmic and Nuclear - genetics
Receptors, Cytoplasmic and Nuclear - metabolism
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Vesicular Transport Proteins - genetics
Vesicular Transport Proteins - metabolism
Yeast
title Mitophagy Plays an Essential Role in Reducing Mitochondrial Production of Reactive Oxygen Species and Mutation of Mitochondrial DNA by Maintaining Mitochondrial Quantity and Quality in Yeast
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A10%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitophagy%20Plays%20an%20Essential%20Role%20in%20Reducing%20Mitochondrial%20Production%20of%20Reactive%20Oxygen%20Species%20and%20Mutation%20of%20Mitochondrial%20DNA%20by%20Maintaining%20Mitochondrial%20Quantity%20and%20Quality%20in%20Yeast&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Kurihara,%20Yusuke&rft.date=2012-01-27&rft.volume=287&rft.issue=5&rft.spage=3265&rft.epage=3272&rft.pages=3265-3272&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M111.280156&rft_dat=%3Cproquest_pubme%3E918932113%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=918932113&rft_id=info:pmid/22157017&rft_els_id=S002192582048278X&rfr_iscdi=true